Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F146]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177609
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

District name (district)

Data file: Section_1

Overview

Valid: 1915
Invalid: 0
Type: Discrete
Decimal: 0
Start: 1
End: 2
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
District name
Categories
Value Category Cases
1 Taplejung 15
0.8%
2 Panchthar 0
0%
3 Ilam 50
2.6%
4 Jhapa 77
4%
5 Morang 45
2.3%
6 Sunsari 31
1.6%
7 Dhankuta 30
1.6%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 36
1.9%
11 Solukhumbu 23
1.2%
12 Okhaldhunga 21
1.1%
13 Khotang 40
2.1%
14 Udayapur 51
2.7%
15 Saptari 33
1.7%
16 Siraha 0
0%
17 Dhanusha 42
2.2%
18 Mahottari 41
2.1%
19 Sarlahi 51
2.7%
20 Sindhuli 41
2.1%
21 Ramechhap 0
0%
22 Dolakha 27
1.4%
23 Sindhupalchok 56
2.9%
24 Kabhrepalanchok 63
3.3%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 51
2.7%
29 Rasuwa 0
0%
30 Dhading 68
3.6%
31 Makwanpur 48
2.5%
32 Rautahat 0
0%
33 Bara 42
2.2%
34 Parsa 29
1.5%
35 Chitwan 0
0%
36 Gorkha 24
1.3%
37 Lamjung 21
1.1%
38 Tanahun 40
2.1%
39 Syangja 27
1.4%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 9
0.5%
44 Parbat 0
0%
45 Baglung 19
1%
46 Gulmi 29
1.5%
47 Palpa 19
1%
48 Nawalparasi 67
3.5%
49 Rupandehi 57
3%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 39
2%
54 Rukum 45
2.3%
55 Salyan 0
0%
56 Dang 63
3.3%
57 Banke 67
3.5%
58 Bardiya 0
0%
59 Surkhet 37
1.9%
60 Dailekh 26
1.4%
61 Jajarkot 29
1.5%
62 Dolpa 0
0%
63 Jumla 7
0.4%
64 Kalikot 17
0.9%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 10
0.5%
68 Bajhang 26
1.4%
69 Achham 40
2.1%
70 Doti 28
1.5%
71 Kailali 94
4.9%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 43
2.2%
75 Darchula 21
1.1%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025