Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F148]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177756
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

District name (district)

Data file: Section_3a

Overview

Valid: 2454
Invalid: 0
Type: Discrete
Decimal: 0
Start: 1
End: 2
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
District name
Categories
Value Category Cases
1 Taplejung 11
0.4%
2 Panchthar 0
0%
3 Ilam 51
2.1%
4 Jhapa 100
4.1%
5 Morang 141
5.7%
6 Sunsari 109
4.4%
7 Dhankuta 27
1.1%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 30
1.2%
11 Solukhumbu 16
0.7%
12 Okhaldhunga 19
0.8%
13 Khotang 39
1.6%
14 Udayapur 49
2%
15 Saptari 115
4.7%
16 Siraha 0
0%
17 Dhanusha 109
4.4%
18 Mahottari 79
3.2%
19 Sarlahi 110
4.5%
20 Sindhuli 37
1.5%
21 Ramechhap 0
0%
22 Dolakha 18
0.7%
23 Sindhupalchok 44
1.8%
24 Kabhrepalanchok 59
2.4%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 34
1.4%
29 Rasuwa 0
0%
30 Dhading 53
2.2%
31 Makwanpur 58
2.4%
32 Rautahat 0
0%
33 Bara 82
3.3%
34 Parsa 55
2.2%
35 Chitwan 0
0%
36 Gorkha 24
1%
37 Lamjung 46
1.9%
38 Tanahun 65
2.6%
39 Syangja 31
1.3%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 9
0.4%
44 Parbat 0
0%
45 Baglung 27
1.1%
46 Gulmi 46
1.9%
47 Palpa 23
0.9%
48 Nawalparasi 62
2.5%
49 Rupandehi 60
2.4%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 39
1.6%
54 Rukum 37
1.5%
55 Salyan 0
0%
56 Dang 90
3.7%
57 Banke 56
2.3%
58 Bardiya 0
0%
59 Surkhet 44
1.8%
60 Dailekh 21
0.9%
61 Jajarkot 22
0.9%
62 Dolpa 0
0%
63 Jumla 8
0.3%
64 Kalikot 13
0.5%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 11
0.4%
68 Bajhang 29
1.2%
69 Achham 36
1.5%
70 Doti 26
1.1%
71 Kailali 130
5.3%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 34
1.4%
75 Darchula 20
0.8%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025