Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F150]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
178170
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

District name (district)

Data file: Section_4a

Overview

Valid: 1593
Invalid: 0
Type: Discrete
Decimal: 0
Start: 1
End: 2
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
District name
Categories
Value Category Cases
1 Taplejung 7
0.4%
2 Panchthar 0
0%
3 Ilam 31
1.9%
4 Jhapa 40
2.5%
5 Morang 54
3.4%
6 Sunsari 37
2.3%
7 Dhankuta 18
1.1%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 21
1.3%
11 Solukhumbu 8
0.5%
12 Okhaldhunga 9
0.6%
13 Khotang 27
1.7%
14 Udayapur 30
1.9%
15 Saptari 31
1.9%
16 Siraha 0
0%
17 Dhanusha 33
2.1%
18 Mahottari 23
1.4%
19 Sarlahi 30
1.9%
20 Sindhuli 15
0.9%
21 Ramechhap 0
0%
22 Dolakha 10
0.6%
23 Sindhupalchok 63
4%
24 Kabhrepalanchok 61
3.8%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 23
1.4%
29 Rasuwa 0
0%
30 Dhading 29
1.8%
31 Makwanpur 64
4%
32 Rautahat 0
0%
33 Bara 16
1%
34 Parsa 18
1.1%
35 Chitwan 0
0%
36 Gorkha 21
1.3%
37 Lamjung 22
1.4%
38 Tanahun 35
2.2%
39 Syangja 31
1.9%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 15
0.9%
44 Parbat 0
0%
45 Baglung 36
2.3%
46 Gulmi 55
3.5%
47 Palpa 37
2.3%
48 Nawalparasi 62
3.9%
49 Rupandehi 61
3.8%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 45
2.8%
54 Rukum 59
3.7%
55 Salyan 0
0%
56 Dang 79
5%
57 Banke 48
3%
58 Bardiya 0
0%
59 Surkhet 39
2.4%
60 Dailekh 36
2.3%
61 Jajarkot 39
2.4%
62 Dolpa 0
0%
63 Jumla 9
0.6%
64 Kalikot 26
1.6%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 14
0.9%
68 Bajhang 9
0.6%
69 Achham 8
0.5%
70 Doti 7
0.4%
71 Kailali 92
5.8%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 6
0.4%
75 Darchula 4
0.3%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025