Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F151]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177069
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

District name (district)

Data file: Section_4b

Overview

Valid: 1681
Invalid: 0
Type: Discrete
Decimal: 0
Start: 1
End: 2
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
District name
Categories
Value Category Cases
1 Taplejung 8
0.5%
2 Panchthar 0
0%
3 Ilam 31
1.8%
4 Jhapa 48
2.9%
5 Morang 50
3%
6 Sunsari 34
2%
7 Dhankuta 15
0.9%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 17
1%
11 Solukhumbu 6
0.4%
12 Okhaldhunga 10
0.6%
13 Khotang 22
1.3%
14 Udayapur 28
1.7%
15 Saptari 27
1.6%
16 Siraha 0
0%
17 Dhanusha 33
2%
18 Mahottari 22
1.3%
19 Sarlahi 26
1.5%
20 Sindhuli 17
1%
21 Ramechhap 0
0%
22 Dolakha 11
0.7%
23 Sindhupalchok 70
4.2%
24 Kabhrepalanchok 67
4%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 33
2%
29 Rasuwa 0
0%
30 Dhading 40
2.4%
31 Makwanpur 73
4.3%
32 Rautahat 0
0%
33 Bara 14
0.8%
34 Parsa 14
0.8%
35 Chitwan 0
0%
36 Gorkha 26
1.5%
37 Lamjung 26
1.5%
38 Tanahun 47
2.8%
39 Syangja 35
2.1%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 16
1%
44 Parbat 0
0%
45 Baglung 46
2.7%
46 Gulmi 53
3.2%
47 Palpa 32
1.9%
48 Nawalparasi 57
3.4%
49 Rupandehi 54
3.2%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 39
2.3%
54 Rukum 55
3.3%
55 Salyan 0
0%
56 Dang 97
5.8%
57 Banke 44
2.6%
58 Bardiya 0
0%
59 Surkhet 59
3.5%
60 Dailekh 47
2.8%
61 Jajarkot 36
2.1%
62 Dolpa 0
0%
63 Jumla 11
0.7%
64 Kalikot 34
2%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 19
1.1%
68 Bajhang 11
0.7%
69 Achham 7
0.4%
70 Doti 7
0.4%
71 Kailali 97
5.8%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 6
0.4%
75 Darchula 4
0.2%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025