Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F152]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
175696
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

District name (district)

Data file: Section_5

Overview

Valid: 9176
Invalid: 0
Type: Discrete
Decimal: 0
Start: 1
End: 2
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
District name
Categories
Value Category Cases
1 Taplejung 40
0.4%
2 Panchthar 0
0%
3 Ilam 137
1.5%
4 Jhapa 193
2.1%
5 Morang 170
1.9%
6 Sunsari 140
1.5%
7 Dhankuta 93
1%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 96
1%
11 Solukhumbu 52
0.6%
12 Okhaldhunga 93
1%
13 Khotang 119
1.3%
14 Udayapur 167
1.8%
15 Saptari 229
2.5%
16 Siraha 0
0%
17 Dhanusha 202
2.2%
18 Mahottari 232
2.5%
19 Sarlahi 330
3.6%
20 Sindhuli 163
1.8%
21 Ramechhap 0
0%
22 Dolakha 101
1.1%
23 Sindhupalchok 343
3.7%
24 Kabhrepalanchok 386
4.2%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 229
2.5%
29 Rasuwa 0
0%
30 Dhading 210
2.3%
31 Makwanpur 422
4.6%
32 Rautahat 0
0%
33 Bara 249
2.7%
34 Parsa 197
2.1%
35 Chitwan 0
0%
36 Gorkha 132
1.4%
37 Lamjung 158
1.7%
38 Tanahun 226
2.5%
39 Syangja 125
1.4%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 90
1%
44 Parbat 0
0%
45 Baglung 133
1.4%
46 Gulmi 173
1.9%
47 Palpa 141
1.5%
48 Nawalparasi 224
2.4%
49 Rupandehi 252
2.7%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 176
1.9%
54 Rukum 251
2.7%
55 Salyan 0
0%
56 Dang 192
2.1%
57 Banke 230
2.5%
58 Bardiya 0
0%
59 Surkhet 283
3.1%
60 Dailekh 224
2.4%
61 Jajarkot 208
2.3%
62 Dolpa 0
0%
63 Jumla 38
0.4%
64 Kalikot 135
1.5%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 78
0.9%
68 Bajhang 112
1.2%
69 Achham 200
2.2%
70 Doti 107
1.2%
71 Kailali 391
4.3%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 225
2.5%
75 Darchula 79
0.9%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025