Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F154]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177217
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

District where born Other (s01q05b)

Data file: Section_1

Overview

Valid: 1973
Invalid: 25626
Type: Discrete
Decimal: 2
Start: 153
End: 157
Width: 5
Range: 1 - 76
Format: Numeric

Questions and instructions

Literal question
1.05b. Where was ...born?
Categories
Value Category Cases
1 Taplejung 58
2.9%
2 Panchthar 56
2.8%
3 Ilam 56
2.8%
4 Jhapa 23
1.2%
5 Morang 22
1.1%
6 Sunsari 17
0.9%
7 Dhankuta 13
0.7%
8 Tehrathum 38
1.9%
9 Sankhuwasabha 17
0.9%
10 Bhojpur 38
1.9%
11 Solukhumbu 15
0.8%
12 Okhaldhunga 36
1.8%
13 Khotang 67
3.4%
14 Udayapur 15
0.8%
15 Saptari 5
0.3%
16 Siraha 14
0.7%
17 Dhanusha 17
0.9%
18 Mahottari 23
1.2%
19 Sarlahi 15
0.8%
20 Sindhuli 31
1.6%
21 Ramechhap 18
0.9%
22 Dolakha 5
0.3%
23 Sindhupalchok 30
1.5%
24 Kabhrepalanchok 26
1.3%
25 Lalitpur 6
0.3%
26 Bhaktapur 6
0.3%
27 Kathmandu 25
1.3%
28 Nuwakot 11
0.6%
29 Rasuwa 4
0.2%
30 Dhading 24
1.2%
31 Makwanpur 15
0.8%
32 Rautahat 15
0.8%
33 Bara 18
0.9%
34 Parsa 11
0.6%
35 Chitwan 39
2%
36 Gorkha 7
0.4%
37 Lamjung 17
0.9%
38 Tanahun 20
1%
39 Syangja 62
3.1%
40 Kaski 29
1.5%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 5
0.3%
44 Parbat 31
1.6%
45 Baglung 34
1.7%
46 Gulmi 61
3.1%
47 Palpa 54
2.7%
48 Nawalparasi 20
1%
49 Rupandehi 8
0.4%
50 Kapilbastu 10
0.5%
51 Arghakhanchi 28
1.4%
52 Pyuthan 36
1.8%
53 Rolpa 16
0.8%
54 Rukum 12
0.6%
55 Salyan 56
2.8%
56 Dang 10
0.5%
57 Banke 5
0.3%
58 Bardiya 16
0.8%
59 Surkhet 39
2%
60 Dailekh 72
3.6%
61 Jajarkot 6
0.3%
62 Dolpa 2
0.1%
63 Jumla 7
0.4%
64 Kalikot 13
0.7%
65 Mugu 11
0.6%
66 Humla 0
0%
67 Bajura 12
0.6%
68 Bajhang 17
0.9%
69 Achham 55
2.8%
70 Doti 98
5%
71 Kailali 7
0.4%
72 Kanchanpur 18
0.9%
73 Dadeldhura 17
0.9%
74 Baitadi 15
0.8%
75 Darchula 7
0.4%
76 Born in another country 211
10.7%
Sysmiss 25626
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025