Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F158]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
213218
Downloads
559
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_5a

Overview

Valid: 84620
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 498
0.6%
2 Panchthar 0
0%
3 Ilam 1682
2%
4 Jhapa 2602
3.1%
5 Morang 3423
4%
6 Sunsari 2354
2.8%
7 Dhankuta 1099
1.3%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 1394
1.6%
11 Solukhumbu 830
1%
12 Okhaldhunga 865
1%
13 Khotang 1564
1.8%
14 Udayapur 1793
2.1%
15 Saptari 2171
2.6%
16 Siraha 0
0%
17 Dhanusha 2348
2.8%
18 Mahottari 1827
2.2%
19 Sarlahi 2382
2.8%
20 Sindhuli 1834
2.2%
21 Ramechhap 0
0%
22 Dolakha 1096
1.3%
23 Sindhupalchok 2377
2.8%
24 Kabhrepalanchok 2415
2.9%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 1571
1.9%
29 Rasuwa 0
0%
30 Dhading 2372
2.8%
31 Makwanpur 2098
2.5%
32 Rautahat 0
0%
33 Bara 1958
2.3%
34 Parsa 1406
1.7%
35 Chitwan 0
0%
36 Gorkha 812
1%
37 Lamjung 866
1%
38 Tanahun 1243
1.5%
39 Syangja 1069
1.3%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 815
1%
44 Parbat 0
0%
45 Baglung 1662
2%
46 Gulmi 2436
2.9%
47 Palpa 1743
2.1%
48 Nawalparasi 3699
4.4%
49 Rupandehi 4004
4.7%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 1413
1.7%
54 Rukum 1754
2.1%
55 Salyan 0
0%
56 Dang 2352
2.8%
57 Banke 2146
2.5%
58 Bardiya 0
0%
59 Surkhet 2101
2.5%
60 Dailekh 1327
1.6%
61 Jajarkot 1111
1.3%
62 Dolpa 0
0%
63 Jumla 388
0.5%
64 Kalikot 731
0.9%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 618
0.7%
68 Bajhang 794
0.9%
69 Achham 1071
1.3%
70 Doti 755
0.9%
71 Kailali 3840
4.5%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 1115
1.3%
75 Darchula 796
0.9%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025