Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F161]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
178730
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_6b

Overview

Valid: 19125
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 109
0.6%
2 Panchthar 0
0%
3 Ilam 361
1.9%
4 Jhapa 544
2.8%
5 Morang 638
3.3%
6 Sunsari 426
2.2%
7 Dhankuta 273
1.4%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 378
2%
11 Solukhumbu 138
0.7%
12 Okhaldhunga 133
0.7%
13 Khotang 407
2.1%
14 Udayapur 451
2.4%
15 Saptari 378
2%
16 Siraha 0
0%
17 Dhanusha 450
2.4%
18 Mahottari 295
1.5%
19 Sarlahi 405
2.1%
20 Sindhuli 257
1.3%
21 Ramechhap 0
0%
22 Dolakha 192
1%
23 Sindhupalchok 728
3.8%
24 Kabhrepalanchok 799
4.2%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 281
1.5%
29 Rasuwa 0
0%
30 Dhading 612
3.2%
31 Makwanpur 610
3.2%
32 Rautahat 0
0%
33 Bara 347
1.8%
34 Parsa 275
1.4%
35 Chitwan 0
0%
36 Gorkha 142
0.7%
37 Lamjung 144
0.8%
38 Tanahun 245
1.3%
39 Syangja 184
1%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 237
1.2%
44 Parbat 0
0%
45 Baglung 522
2.7%
46 Gulmi 649
3.4%
47 Palpa 468
2.4%
48 Nawalparasi 728
3.8%
49 Rupandehi 767
4%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 393
2.1%
54 Rukum 529
2.8%
55 Salyan 0
0%
56 Dang 808
4.2%
57 Banke 600
3.1%
58 Bardiya 0
0%
59 Surkhet 499
2.6%
60 Dailekh 351
1.8%
61 Jajarkot 337
1.8%
62 Dolpa 0
0%
63 Jumla 80
0.4%
64 Kalikot 172
0.9%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 160
0.8%
68 Bajhang 102
0.5%
69 Achham 122
0.6%
70 Doti 101
0.5%
71 Kailali 1050
5.5%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 142
0.7%
75 Darchula 106
0.6%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025