Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F165]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177389
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_8

Overview

Valid: 3266
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 35
1.1%
2 Panchthar 0
0%
3 Ilam 28
0.9%
4 Jhapa 75
2.3%
5 Morang 171
5.2%
6 Sunsari 112
3.4%
7 Dhankuta 14
0.4%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 34
1%
11 Solukhumbu 27
0.8%
12 Okhaldhunga 24
0.7%
13 Khotang 30
0.9%
14 Udayapur 40
1.2%
15 Saptari 142
4.3%
16 Siraha 0
0%
17 Dhanusha 93
2.8%
18 Mahottari 106
3.2%
19 Sarlahi 136
4.2%
20 Sindhuli 38
1.2%
21 Ramechhap 0
0%
22 Dolakha 13
0.4%
23 Sindhupalchok 84
2.6%
24 Kabhrepalanchok 69
2.1%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 74
2.3%
29 Rasuwa 0
0%
30 Dhading 86
2.6%
31 Makwanpur 98
3%
32 Rautahat 0
0%
33 Bara 113
3.5%
34 Parsa 94
2.9%
35 Chitwan 0
0%
36 Gorkha 29
0.9%
37 Lamjung 31
0.9%
38 Tanahun 42
1.3%
39 Syangja 37
1.1%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 26
0.8%
44 Parbat 0
0%
45 Baglung 29
0.9%
46 Gulmi 49
1.5%
47 Palpa 26
0.8%
48 Nawalparasi 120
3.7%
49 Rupandehi 206
6.3%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 55
1.7%
54 Rukum 44
1.3%
55 Salyan 0
0%
56 Dang 125
3.8%
57 Banke 114
3.5%
58 Bardiya 0
0%
59 Surkhet 46
1.4%
60 Dailekh 46
1.4%
61 Jajarkot 40
1.2%
62 Dolpa 0
0%
63 Jumla 23
0.7%
64 Kalikot 25
0.8%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 19
0.6%
68 Bajhang 29
0.9%
69 Achham 41
1.3%
70 Doti 33
1%
71 Kailali 222
6.8%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 39
1.2%
75 Darchula 34
1%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025