Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F166]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
176364
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

District where plot is located (s09q04a)

Data file: Section_9a1

Overview

Valid: 8844
Invalid: 12
Type: Discrete
Decimal: 2
Start: 70
End: 74
Width: 5
Range: 1 - 76
Format: Numeric

Questions and instructions

Literal question
9.4a. Where is this plot located - District? (write a code)
Categories
Value Category Cases
1 Taplejung 104
1.2%
2 Panchthar 0
0%
3 Ilam 248
2.8%
4 Jhapa 176
2%
5 Morang 115
1.3%
6 Sunsari 96
1.1%
7 Dhankuta 127
1.4%
8 Tehrathum 0
0%
9 Sankhuwasabha 2
0%
10 Bhojpur 179
2%
11 Solukhumbu 82
0.9%
12 Okhaldhunga 112
1.3%
13 Khotang 194
2.2%
14 Udayapur 196
2.2%
15 Saptari 171
1.9%
16 Siraha 0
0%
17 Dhanusha 178
2%
18 Mahottari 171
1.9%
19 Sarlahi 185
2.1%
20 Sindhuli 180
2%
21 Ramechhap 0
0%
22 Dolakha 144
1.6%
23 Sindhupalchok 437
4.9%
24 Kabhrepalanchok 325
3.7%
25 Lalitpur 0
0%
26 Bhaktapur 3
0%
27 Kathmandu 3
0%
28 Nuwakot 213
2.4%
29 Rasuwa 0
0%
30 Dhading 294
3.3%
31 Makwanpur 223
2.5%
32 Rautahat 0
0%
33 Bara 153
1.7%
34 Parsa 170
1.9%
35 Chitwan 2
0%
36 Gorkha 115
1.3%
37 Lamjung 98
1.1%
38 Tanahun 143
1.6%
39 Syangja 109
1.2%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 85
1%
44 Parbat 0
0%
45 Baglung 153
1.7%
46 Gulmi 201
2.3%
47 Palpa 122
1.4%
48 Nawalparasi 283
3.2%
49 Rupandehi 235
2.7%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 258
2.9%
54 Rukum 331
3.7%
55 Salyan 0
0%
56 Dang 200
2.3%
57 Banke 140
1.6%
58 Bardiya 5
0.1%
59 Surkhet 223
2.5%
60 Dailekh 210
2.4%
61 Jajarkot 280
3.2%
62 Dolpa 1
0%
63 Jumla 87
1%
64 Kalikot 134
1.5%
65 Mugu 1
0%
66 Humla 0
0%
67 Bajura 115
1.3%
68 Bajhang 100
1.1%
69 Achham 161
1.8%
70 Doti 104
1.2%
71 Kailali 258
2.9%
72 Kanchanpur 1
0%
73 Dadeldhura 2
0%
74 Baitadi 106
1.2%
75 Darchula 95
1.1%
76 Other 5
0.1%
Sysmiss 12
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025