Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F171]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177648
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_9b2

Overview

Valid: 8573
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 57
0.7%
2 Panchthar 0
0%
3 Ilam 282
3.3%
4 Jhapa 245
2.9%
5 Morang 122
1.4%
6 Sunsari 103
1.2%
7 Dhankuta 89
1%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 111
1.3%
11 Solukhumbu 74
0.9%
12 Okhaldhunga 87
1%
13 Khotang 106
1.2%
14 Udayapur 115
1.3%
15 Saptari 136
1.6%
16 Siraha 0
0%
17 Dhanusha 158
1.8%
18 Mahottari 146
1.7%
19 Sarlahi 166
1.9%
20 Sindhuli 157
1.8%
21 Ramechhap 0
0%
22 Dolakha 93
1.1%
23 Sindhupalchok 173
2%
24 Kabhrepalanchok 272
3.2%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 100
1.2%
29 Rasuwa 0
0%
30 Dhading 33
0.4%
31 Makwanpur 251
2.9%
32 Rautahat 0
0%
33 Bara 171
2%
34 Parsa 144
1.7%
35 Chitwan 0
0%
36 Gorkha 41
0.5%
37 Lamjung 63
0.7%
38 Tanahun 87
1%
39 Syangja 30
0.3%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 89
1%
44 Parbat 0
0%
45 Baglung 345
4%
46 Gulmi 481
5.6%
47 Palpa 304
3.5%
48 Nawalparasi 336
3.9%
49 Rupandehi 305
3.6%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 236
2.8%
54 Rukum 307
3.6%
55 Salyan 0
0%
56 Dang 280
3.3%
57 Banke 163
1.9%
58 Bardiya 0
0%
59 Surkhet 392
4.6%
60 Dailekh 232
2.7%
61 Jajarkot 317
3.7%
62 Dolpa 0
0%
63 Jumla 35
0.4%
64 Kalikot 121
1.4%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 85
1%
68 Bajhang 92
1.1%
69 Achham 94
1.1%
70 Doti 79
0.9%
71 Kailali 419
4.9%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 135
1.6%
75 Darchula 114
1.3%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025