Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F173]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177725
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_9d

Overview

Valid: 10501
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 114
1.1%
2 Panchthar 0
0%
3 Ilam 273
2.6%
4 Jhapa 315
3%
5 Morang 162
1.5%
6 Sunsari 161
1.5%
7 Dhankuta 221
2.1%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 319
3%
11 Solukhumbu 110
1%
12 Okhaldhunga 147
1.4%
13 Khotang 309
2.9%
14 Udayapur 311
3%
15 Saptari 162
1.5%
16 Siraha 0
0%
17 Dhanusha 139
1.3%
18 Mahottari 119
1.1%
19 Sarlahi 142
1.4%
20 Sindhuli 272
2.6%
21 Ramechhap 0
0%
22 Dolakha 175
1.7%
23 Sindhupalchok 302
2.9%
24 Kabhrepalanchok 329
3.1%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 195
1.9%
29 Rasuwa 0
0%
30 Dhading 322
3.1%
31 Makwanpur 344
3.3%
32 Rautahat 0
0%
33 Bara 101
1%
34 Parsa 104
1%
35 Chitwan 0
0%
36 Gorkha 141
1.3%
37 Lamjung 129
1.2%
38 Tanahun 209
2%
39 Syangja 190
1.8%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 107
1%
44 Parbat 0
0%
45 Baglung 232
2.2%
46 Gulmi 346
3.3%
47 Palpa 202
1.9%
48 Nawalparasi 287
2.7%
49 Rupandehi 296
2.8%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 197
1.9%
54 Rukum 273
2.6%
55 Salyan 0
0%
56 Dang 302
2.9%
57 Banke 180
1.7%
58 Bardiya 0
0%
59 Surkhet 309
2.9%
60 Dailekh 258
2.5%
61 Jajarkot 223
2.1%
62 Dolpa 0
0%
63 Jumla 46
0.4%
64 Kalikot 121
1.2%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 83
0.8%
68 Bajhang 161
1.5%
69 Achham 184
1.8%
70 Doti 134
1.3%
71 Kailali 400
3.8%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 202
1.9%
75 Darchula 141
1.3%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025