Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F176]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177809
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_10

Overview

Valid: 780
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 2
0.3%
2 Panchthar 0
0%
3 Ilam 13
1.7%
4 Jhapa 26
3.3%
5 Morang 38
4.9%
6 Sunsari 17
2.2%
7 Dhankuta 5
0.6%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 4
0.5%
11 Solukhumbu 9
1.2%
12 Okhaldhunga 4
0.5%
13 Khotang 19
2.4%
14 Udayapur 16
2.1%
15 Saptari 19
2.4%
16 Siraha 0
0%
17 Dhanusha 13
1.7%
18 Mahottari 16
2.1%
19 Sarlahi 16
2.1%
20 Sindhuli 17
2.2%
21 Ramechhap 0
0%
22 Dolakha 6
0.8%
23 Sindhupalchok 14
1.8%
24 Kabhrepalanchok 25
3.2%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 16
2.1%
29 Rasuwa 0
0%
30 Dhading 13
1.7%
31 Makwanpur 21
2.7%
32 Rautahat 0
0%
33 Bara 9
1.2%
34 Parsa 10
1.3%
35 Chitwan 0
0%
36 Gorkha 1
0.1%
37 Lamjung 1
0.1%
38 Tanahun 3
0.4%
39 Syangja 3
0.4%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 6
0.8%
44 Parbat 0
0%
45 Baglung 17
2.2%
46 Gulmi 21
2.7%
47 Palpa 12
1.5%
48 Nawalparasi 53
6.8%
49 Rupandehi 64
8.2%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 15
1.9%
54 Rukum 16
2.1%
55 Salyan 0
0%
56 Dang 25
3.2%
57 Banke 22
2.8%
58 Bardiya 0
0%
59 Surkhet 29
3.7%
60 Dailekh 20
2.6%
61 Jajarkot 7
0.9%
62 Dolpa 0
0%
63 Jumla 10
1.3%
64 Kalikot 12
1.5%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 12
1.5%
68 Bajhang 3
0.4%
69 Achham 7
0.9%
70 Doti 6
0.8%
71 Kailali 52
6.7%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 9
1.2%
75 Darchula 6
0.8%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025