Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F177]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177758
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_11

Overview

Valid: 3685
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 28
0.8%
2 Panchthar 0
0%
3 Ilam 105
2.8%
4 Jhapa 83
2.3%
5 Morang 90
2.4%
6 Sunsari 57
1.5%
7 Dhankuta 53
1.4%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 81
2.2%
11 Solukhumbu 32
0.9%
12 Okhaldhunga 44
1.2%
13 Khotang 81
2.2%
14 Udayapur 93
2.5%
15 Saptari 66
1.8%
16 Siraha 0
0%
17 Dhanusha 65
1.8%
18 Mahottari 58
1.6%
19 Sarlahi 51
1.4%
20 Sindhuli 77
2.1%
21 Ramechhap 0
0%
22 Dolakha 49
1.3%
23 Sindhupalchok 96
2.6%
24 Kabhrepalanchok 127
3.4%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 56
1.5%
29 Rasuwa 0
0%
30 Dhading 126
3.4%
31 Makwanpur 103
2.8%
32 Rautahat 0
0%
33 Bara 36
1%
34 Parsa 39
1.1%
35 Chitwan 0
0%
36 Gorkha 27
0.7%
37 Lamjung 51
1.4%
38 Tanahun 71
1.9%
39 Syangja 87
2.4%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 23
0.6%
44 Parbat 0
0%
45 Baglung 105
2.8%
46 Gulmi 128
3.5%
47 Palpa 112
3%
48 Nawalparasi 164
4.5%
49 Rupandehi 139
3.8%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 42
1.1%
54 Rukum 95
2.6%
55 Salyan 0
0%
56 Dang 86
2.3%
57 Banke 91
2.5%
58 Bardiya 0
0%
59 Surkhet 103
2.8%
60 Dailekh 112
3%
61 Jajarkot 48
1.3%
62 Dolpa 0
0%
63 Jumla 9
0.2%
64 Kalikot 54
1.5%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 31
0.8%
68 Bajhang 20
0.5%
69 Achham 58
1.6%
70 Doti 41
1.1%
71 Kailali 170
4.6%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 66
1.8%
75 Darchula 56
1.5%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025