Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F186]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177740
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_14a

Overview

Valid: 28485
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 138
0.5%
2 Panchthar 0
0%
3 Ilam 666
2.3%
4 Jhapa 845
3%
5 Morang 1119
3.9%
6 Sunsari 712
2.5%
7 Dhankuta 465
1.6%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 585
2.1%
11 Solukhumbu 258
0.9%
12 Okhaldhunga 280
1%
13 Khotang 628
2.2%
14 Udayapur 769
2.7%
15 Saptari 712
2.5%
16 Siraha 0
0%
17 Dhanusha 776
2.7%
18 Mahottari 657
2.3%
19 Sarlahi 834
2.9%
20 Sindhuli 536
1.9%
21 Ramechhap 0
0%
22 Dolakha 382
1.3%
23 Sindhupalchok 669
2.3%
24 Kabhrepalanchok 788
2.8%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 478
1.7%
29 Rasuwa 0
0%
30 Dhading 834
2.9%
31 Makwanpur 692
2.4%
32 Rautahat 0
0%
33 Bara 617
2.2%
34 Parsa 453
1.6%
35 Chitwan 0
0%
36 Gorkha 368
1.3%
37 Lamjung 424
1.5%
38 Tanahun 706
2.5%
39 Syangja 546
1.9%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 240
0.8%
44 Parbat 0
0%
45 Baglung 561
2%
46 Gulmi 927
3.3%
47 Palpa 683
2.4%
48 Nawalparasi 1004
3.5%
49 Rupandehi 1122
3.9%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 390
1.4%
54 Rukum 547
1.9%
55 Salyan 0
0%
56 Dang 642
2.3%
57 Banke 540
1.9%
58 Bardiya 0
0%
59 Surkhet 969
3.4%
60 Dailekh 567
2%
61 Jajarkot 322
1.1%
62 Dolpa 0
0%
63 Jumla 152
0.5%
64 Kalikot 296
1%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 256
0.9%
68 Bajhang 258
0.9%
69 Achham 330
1.2%
70 Doti 214
0.8%
71 Kailali 935
3.3%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 322
1.1%
75 Darchula 271
1%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025