Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F188]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177755
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_14c

Overview

Valid: 6873
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 45
0.7%
2 Panchthar 0
0%
3 Ilam 143
2.1%
4 Jhapa 198
2.9%
5 Morang 225
3.3%
6 Sunsari 150
2.2%
7 Dhankuta 91
1.3%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 120
1.7%
11 Solukhumbu 60
0.9%
12 Okhaldhunga 66
1%
13 Khotang 132
1.9%
14 Udayapur 138
2%
15 Saptari 151
2.2%
16 Siraha 0
0%
17 Dhanusha 168
2.4%
18 Mahottari 135
2%
19 Sarlahi 182
2.6%
20 Sindhuli 124
1.8%
21 Ramechhap 0
0%
22 Dolakha 75
1.1%
23 Sindhupalchok 173
2.5%
24 Kabhrepalanchok 170
2.5%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 135
2%
29 Rasuwa 0
0%
30 Dhading 191
2.8%
31 Makwanpur 171
2.5%
32 Rautahat 0
0%
33 Bara 139
2%
34 Parsa 107
1.6%
35 Chitwan 0
0%
36 Gorkha 79
1.1%
37 Lamjung 79
1.1%
38 Tanahun 125
1.8%
39 Syangja 94
1.4%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 56
0.8%
44 Parbat 0
0%
45 Baglung 120
1.7%
46 Gulmi 144
2.1%
47 Palpa 110
1.6%
48 Nawalparasi 255
3.7%
49 Rupandehi 270
3.9%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 102
1.5%
54 Rukum 142
2.1%
55 Salyan 0
0%
56 Dang 185
2.7%
57 Banke 181
2.6%
58 Bardiya 0
0%
59 Surkhet 242
3.5%
60 Dailekh 155
2.3%
61 Jajarkot 93
1.4%
62 Dolpa 0
0%
63 Jumla 105
1.5%
64 Kalikot 189
2.7%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 132
1.9%
68 Bajhang 83
1.2%
69 Achham 108
1.6%
70 Doti 77
1.1%
71 Kailali 293
4.3%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 96
1.4%
75 Darchula 69
1%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025