Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F196]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177539
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

District name (district)

Data file: Section_3a

Overview

Valid: 2379
Invalid: 0
Type: Discrete
Decimal: 0
Start: 4
End: 5
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
District name
Categories
Value Category Cases
1 Taplejung 10
0.4%
2 Panchthar 0
0%
3 Ilam 53
2.2%
4 Jhapa 101
4.2%
5 Morang 67
2.8%
6 Sunsari 39
1.6%
7 Dhankuta 28
1.2%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 30
1.3%
11 Solukhumbu 22
0.9%
12 Okhaldhunga 22
0.9%
13 Khotang 39
1.6%
14 Udayapur 49
2.1%
15 Saptari 70
2.9%
16 Siraha 0
0%
17 Dhanusha 80
3.4%
18 Mahottari 53
2.2%
19 Sarlahi 64
2.7%
20 Sindhuli 44
1.8%
21 Ramechhap 0
0%
22 Dolakha 23
1%
23 Sindhupalchok 47
2%
24 Kabhrepalanchok 53
2.2%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 37
1.6%
29 Rasuwa 0
0%
30 Dhading 52
2.2%
31 Makwanpur 55
2.3%
32 Rautahat 0
0%
33 Bara 44
1.8%
34 Parsa 27
1.1%
35 Chitwan 0
0%
36 Gorkha 18
0.8%
37 Lamjung 40
1.7%
38 Tanahun 65
2.7%
39 Syangja 34
1.4%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 10
0.4%
44 Parbat 0
0%
45 Baglung 26
1.1%
46 Gulmi 46
1.9%
47 Palpa 23
1%
48 Nawalparasi 90
3.8%
49 Rupandehi 126
5.3%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 41
1.7%
54 Rukum 38
1.6%
55 Salyan 0
0%
56 Dang 111
4.7%
57 Banke 96
4%
58 Bardiya 0
0%
59 Surkhet 71
3%
60 Dailekh 51
2.1%
61 Jajarkot 24
1%
62 Dolpa 0
0%
63 Jumla 11
0.5%
64 Kalikot 20
0.8%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 11
0.5%
68 Bajhang 30
1.3%
69 Achham 37
1.6%
70 Doti 30
1.3%
71 Kailali 161
6.8%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 37
1.6%
75 Darchula 23
1%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025