Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F200]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
212755
Downloads
558
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

District name (district)

Data file: Section_5

Overview

Valid: 10517
Invalid: 0
Type: Discrete
Decimal: 0
Start: 4
End: 5
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
District name
Categories
Value Category Cases
1 Taplejung 56
0.5%
2 Panchthar 0
0%
3 Ilam 146
1.4%
4 Jhapa 207
2%
5 Morang 501
4.8%
6 Sunsari 399
3.8%
7 Dhankuta 101
1%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 109
1%
11 Solukhumbu 116
1.1%
12 Okhaldhunga 107
1%
13 Khotang 117
1.1%
14 Udayapur 170
1.6%
15 Saptari 264
2.5%
16 Siraha 0
0%
17 Dhanusha 284
2.7%
18 Mahottari 328
3.1%
19 Sarlahi 429
4.1%
20 Sindhuli 210
2%
21 Ramechhap 0
0%
22 Dolakha 95
0.9%
23 Sindhupalchok 332
3.2%
24 Kabhrepalanchok 341
3.2%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 229
2.2%
29 Rasuwa 0
0%
30 Dhading 393
3.7%
31 Makwanpur 332
3.2%
32 Rautahat 0
0%
33 Bara 282
2.7%
34 Parsa 220
2.1%
35 Chitwan 0
0%
36 Gorkha 103
1%
37 Lamjung 83
0.8%
38 Tanahun 174
1.7%
39 Syangja 143
1.4%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 102
1%
44 Parbat 0
0%
45 Baglung 177
1.7%
46 Gulmi 255
2.4%
47 Palpa 172
1.6%
48 Nawalparasi 340
3.2%
49 Rupandehi 486
4.6%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 225
2.1%
54 Rukum 225
2.1%
55 Salyan 0
0%
56 Dang 169
1.6%
57 Banke 154
1.5%
58 Bardiya 0
0%
59 Surkhet 313
3%
60 Dailekh 141
1.3%
61 Jajarkot 178
1.7%
62 Dolpa 0
0%
63 Jumla 23
0.2%
64 Kalikot 105
1%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 82
0.8%
68 Bajhang 161
1.5%
69 Achham 254
2.4%
70 Doti 171
1.6%
71 Kailali 179
1.7%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 206
2%
75 Darchula 128
1.2%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025