Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F203]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177547
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_2

Overview

Valid: 24884
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 209
0.8%
2 Panchthar 0
0%
3 Ilam 517
2.1%
4 Jhapa 787
3.2%
5 Morang 830
3.3%
6 Sunsari 583
2.3%
7 Dhankuta 302
1.2%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 396
1.6%
11 Solukhumbu 221
0.9%
12 Okhaldhunga 217
0.9%
13 Khotang 440
1.8%
14 Udayapur 486
2%
15 Saptari 681
2.7%
16 Siraha 0
0%
17 Dhanusha 660
2.7%
18 Mahottari 679
2.7%
19 Sarlahi 848
3.4%
20 Sindhuli 559
2.2%
21 Ramechhap 0
0%
22 Dolakha 256
1%
23 Sindhupalchok 522
2.1%
24 Kabhrepalanchok 516
2.1%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 443
1.8%
29 Rasuwa 0
0%
30 Dhading 678
2.7%
31 Makwanpur 597
2.4%
32 Rautahat 0
0%
33 Bara 699
2.8%
34 Parsa 625
2.5%
35 Chitwan 0
0%
36 Gorkha 244
1%
37 Lamjung 269
1.1%
38 Tanahun 438
1.8%
39 Syangja 369
1.5%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 151
0.6%
44 Parbat 0
0%
45 Baglung 346
1.4%
46 Gulmi 504
2%
47 Palpa 326
1.3%
48 Nawalparasi 1046
4.2%
49 Rupandehi 1285
5.2%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 373
1.5%
54 Rukum 382
1.5%
55 Salyan 0
0%
56 Dang 742
3%
57 Banke 671
2.7%
58 Bardiya 0
0%
59 Surkhet 535
2.1%
60 Dailekh 483
1.9%
61 Jajarkot 381
1.5%
62 Dolpa 0
0%
63 Jumla 133
0.5%
64 Kalikot 307
1.2%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 208
0.8%
68 Bajhang 412
1.7%
69 Achham 449
1.8%
70 Doti 350
1.4%
71 Kailali 1090
4.4%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 382
1.5%
75 Darchula 257
1%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025