Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F210]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177031
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_6c

Overview

Valid: 27545
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 154
0.6%
2 Panchthar 0
0%
3 Ilam 574
2.1%
4 Jhapa 1290
4.7%
5 Morang 1232
4.5%
6 Sunsari 856
3.1%
7 Dhankuta 272
1%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 294
1.1%
11 Solukhumbu 258
0.9%
12 Okhaldhunga 249
0.9%
13 Khotang 363
1.3%
14 Udayapur 483
1.8%
15 Saptari 666
2.4%
16 Siraha 0
0%
17 Dhanusha 936
3.4%
18 Mahottari 765
2.8%
19 Sarlahi 986
3.6%
20 Sindhuli 469
1.7%
21 Ramechhap 0
0%
22 Dolakha 292
1.1%
23 Sindhupalchok 499
1.8%
24 Kabhrepalanchok 603
2.2%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 477
1.7%
29 Rasuwa 0
0%
30 Dhading 662
2.4%
31 Makwanpur 625
2.3%
32 Rautahat 0
0%
33 Bara 729
2.6%
34 Parsa 515
1.9%
35 Chitwan 0
0%
36 Gorkha 283
1%
37 Lamjung 342
1.2%
38 Tanahun 520
1.9%
39 Syangja 392
1.4%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 181
0.7%
44 Parbat 0
0%
45 Baglung 376
1.4%
46 Gulmi 561
2%
47 Palpa 457
1.7%
48 Nawalparasi 1620
5.9%
49 Rupandehi 1801
6.5%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 328
1.2%
54 Rukum 363
1.3%
55 Salyan 0
0%
56 Dang 909
3.3%
57 Banke 814
3%
58 Bardiya 0
0%
59 Surkhet 539
2%
60 Dailekh 346
1.3%
61 Jajarkot 238
0.9%
62 Dolpa 0
0%
63 Jumla 113
0.4%
64 Kalikot 177
0.6%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 145
0.5%
68 Bajhang 252
0.9%
69 Achham 310
1.1%
70 Doti 252
0.9%
71 Kailali 1418
5.1%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 317
1.2%
75 Darchula 242
0.9%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025