Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F212]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177759
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_7

Overview

Valid: 15898
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 144
0.9%
2 Panchthar 0
0%
3 Ilam 433
2.7%
4 Jhapa 500
3.1%
5 Morang 513
3.2%
6 Sunsari 424
2.7%
7 Dhankuta 179
1.1%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 230
1.4%
11 Solukhumbu 169
1.1%
12 Okhaldhunga 170
1.1%
13 Khotang 257
1.6%
14 Udayapur 327
2.1%
15 Saptari 364
2.3%
16 Siraha 0
0%
17 Dhanusha 415
2.6%
18 Mahottari 301
1.9%
19 Sarlahi 390
2.5%
20 Sindhuli 422
2.7%
21 Ramechhap 0
0%
22 Dolakha 240
1.5%
23 Sindhupalchok 322
2%
24 Kabhrepalanchok 319
2%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 280
1.8%
29 Rasuwa 0
0%
30 Dhading 416
2.6%
31 Makwanpur 340
2.1%
32 Rautahat 0
0%
33 Bara 351
2.2%
34 Parsa 329
2.1%
35 Chitwan 0
0%
36 Gorkha 201
1.3%
37 Lamjung 176
1.1%
38 Tanahun 334
2.1%
39 Syangja 250
1.6%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 123
0.8%
44 Parbat 0
0%
45 Baglung 222
1.4%
46 Gulmi 373
2.3%
47 Palpa 230
1.4%
48 Nawalparasi 578
3.6%
49 Rupandehi 921
5.8%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 237
1.5%
54 Rukum 270
1.7%
55 Salyan 0
0%
56 Dang 572
3.6%
57 Banke 504
3.2%
58 Bardiya 0
0%
59 Surkhet 383
2.4%
60 Dailekh 296
1.9%
61 Jajarkot 195
1.2%
62 Dolpa 0
0%
63 Jumla 76
0.5%
64 Kalikot 192
1.2%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 106
0.7%
68 Bajhang 190
1.2%
69 Achham 239
1.5%
70 Doti 181
1.1%
71 Kailali 874
5.5%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 199
1.3%
75 Darchula 141
0.9%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025