Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F214]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177078
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_9a1

Overview

Valid: 9744
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 76
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 110
1.1%
2 Panchthar 0
0%
3 Ilam 266
2.7%
4 Jhapa 187
1.9%
5 Morang 118
1.2%
6 Sunsari 92
0.9%
7 Dhankuta 145
1.5%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 190
1.9%
11 Solukhumbu 99
1%
12 Okhaldhunga 114
1.2%
13 Khotang 205
2.1%
14 Udayapur 217
2.2%
15 Saptari 179
1.8%
16 Siraha 0
0%
17 Dhanusha 192
2%
18 Mahottari 174
1.8%
19 Sarlahi 192
2%
20 Sindhuli 192
2%
21 Ramechhap 0
0%
22 Dolakha 149
1.5%
23 Sindhupalchok 483
5%
24 Kabhrepalanchok 364
3.7%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 234
2.4%
29 Rasuwa 0
0%
30 Dhading 315
3.2%
31 Makwanpur 241
2.5%
32 Rautahat 0
0%
33 Bara 158
1.6%
34 Parsa 171
1.8%
35 Chitwan 0
0%
36 Gorkha 147
1.5%
37 Lamjung 143
1.5%
38 Tanahun 199
2%
39 Syangja 131
1.3%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 108
1.1%
44 Parbat 0
0%
45 Baglung 187
1.9%
46 Gulmi 257
2.6%
47 Palpa 131
1.3%
48 Nawalparasi 303
3.1%
49 Rupandehi 241
2.5%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 303
3.1%
54 Rukum 377
3.9%
55 Salyan 0
0%
56 Dang 233
2.4%
57 Banke 155
1.6%
58 Bardiya 0
0%
59 Surkhet 257
2.6%
60 Dailekh 222
2.3%
61 Jajarkot 294
3%
62 Dolpa 0
0%
63 Jumla 90
0.9%
64 Kalikot 146
1.5%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 131
1.3%
68 Bajhang 106
1.1%
69 Achham 184
1.9%
70 Doti 115
1.2%
71 Kailali 274
2.8%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 121
1.2%
75 Darchula 102
1%
76 Other 0
0%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025