Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F215]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177646
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_9a2

Overview

Valid: 1051
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 33
3.1%
2 Panchthar 0
0%
3 Ilam 29
2.8%
4 Jhapa 51
4.9%
5 Morang 29
2.8%
6 Sunsari 26
2.5%
7 Dhankuta 12
1.1%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 24
2.3%
11 Solukhumbu 9
0.9%
12 Okhaldhunga 11
1%
13 Khotang 29
2.8%
14 Udayapur 23
2.2%
15 Saptari 44
4.2%
16 Siraha 0
0%
17 Dhanusha 6
0.6%
18 Mahottari 44
4.2%
19 Sarlahi 22
2.1%
20 Sindhuli 25
2.4%
21 Ramechhap 0
0%
22 Dolakha 13
1.2%
23 Sindhupalchok 39
3.7%
24 Kabhrepalanchok 35
3.3%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 16
1.5%
29 Rasuwa 0
0%
30 Dhading 29
2.8%
31 Makwanpur 33
3.1%
32 Rautahat 0
0%
33 Bara 8
0.8%
34 Parsa 4
0.4%
35 Chitwan 0
0%
36 Gorkha 8
0.8%
37 Lamjung 13
1.2%
38 Tanahun 10
1%
39 Syangja 6
0.6%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 5
0.5%
44 Parbat 0
0%
45 Baglung 18
1.7%
46 Gulmi 14
1.3%
47 Palpa 4
0.4%
48 Nawalparasi 55
5.2%
49 Rupandehi 52
4.9%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 4
0.4%
54 Rukum 10
1%
55 Salyan 0
0%
56 Dang 64
6.1%
57 Banke 31
2.9%
58 Bardiya 0
0%
59 Surkhet 18
1.7%
60 Dailekh 19
1.8%
61 Jajarkot 3
0.3%
62 Dolpa 0
0%
63 Jumla 2
0.2%
64 Kalikot 7
0.7%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 8
0.8%
68 Bajhang 2
0.2%
69 Achham 9
0.9%
70 Doti 6
0.6%
71 Kailali 75
7.1%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 10
1%
75 Darchula 4
0.4%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025