Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F218]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177689
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_9b1

Overview

Valid: 12063
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 109
0.9%
2 Panchthar 0
0%
3 Ilam 413
3.4%
4 Jhapa 225
1.9%
5 Morang 234
1.9%
6 Sunsari 152
1.3%
7 Dhankuta 282
2.3%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 333
2.8%
11 Solukhumbu 166
1.4%
12 Okhaldhunga 180
1.5%
13 Khotang 393
3.3%
14 Udayapur 306
2.5%
15 Saptari 161
1.3%
16 Siraha 0
0%
17 Dhanusha 167
1.4%
18 Mahottari 174
1.4%
19 Sarlahi 228
1.9%
20 Sindhuli 364
3%
21 Ramechhap 0
0%
22 Dolakha 206
1.7%
23 Sindhupalchok 302
2.5%
24 Kabhrepalanchok 248
2.1%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 361
3%
29 Rasuwa 0
0%
30 Dhading 602
5%
31 Makwanpur 298
2.5%
32 Rautahat 0
0%
33 Bara 136
1.1%
34 Parsa 105
0.9%
35 Chitwan 0
0%
36 Gorkha 145
1.2%
37 Lamjung 168
1.4%
38 Tanahun 201
1.7%
39 Syangja 187
1.6%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 126
1%
44 Parbat 0
0%
45 Baglung 178
1.5%
46 Gulmi 392
3.2%
47 Palpa 228
1.9%
48 Nawalparasi 260
2.2%
49 Rupandehi 271
2.2%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 251
2.1%
54 Rukum 388
3.2%
55 Salyan 0
0%
56 Dang 271
2.2%
57 Banke 222
1.8%
58 Bardiya 0
0%
59 Surkhet 311
2.6%
60 Dailekh 285
2.4%
61 Jajarkot 351
2.9%
62 Dolpa 0
0%
63 Jumla 95
0.8%
64 Kalikot 213
1.8%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 131
1.1%
68 Bajhang 159
1.3%
69 Achham 265
2.2%
70 Doti 159
1.3%
71 Kailali 286
2.4%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 193
1.6%
75 Darchula 182
1.5%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025