Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F219]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
176649
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_9b2

Overview

Valid: 10108
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 49
0.5%
2 Panchthar 0
0%
3 Ilam 166
1.6%
4 Jhapa 161
1.6%
5 Morang 172
1.7%
6 Sunsari 122
1.2%
7 Dhankuta 149
1.5%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 56
0.6%
11 Solukhumbu 118
1.2%
12 Okhaldhunga 146
1.4%
13 Khotang 206
2%
14 Udayapur 106
1%
15 Saptari 185
1.8%
16 Siraha 0
0%
17 Dhanusha 223
2.2%
18 Mahottari 201
2%
19 Sarlahi 264
2.6%
20 Sindhuli 409
4%
21 Ramechhap 0
0%
22 Dolakha 180
1.8%
23 Sindhupalchok 169
1.7%
24 Kabhrepalanchok 185
1.8%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 307
3%
29 Rasuwa 0
0%
30 Dhading 342
3.4%
31 Makwanpur 187
1.9%
32 Rautahat 0
0%
33 Bara 164
1.6%
34 Parsa 124
1.2%
35 Chitwan 0
0%
36 Gorkha 68
0.7%
37 Lamjung 67
0.7%
38 Tanahun 122
1.2%
39 Syangja 32
0.3%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 88
0.9%
44 Parbat 0
0%
45 Baglung 208
2.1%
46 Gulmi 461
4.6%
47 Palpa 324
3.2%
48 Nawalparasi 399
3.9%
49 Rupandehi 465
4.6%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 224
2.2%
54 Rukum 275
2.7%
55 Salyan 0
0%
56 Dang 525
5.2%
57 Banke 295
2.9%
58 Bardiya 0
0%
59 Surkhet 343
3.4%
60 Dailekh 202
2%
61 Jajarkot 217
2.1%
62 Dolpa 0
0%
63 Jumla 65
0.6%
64 Kalikot 174
1.7%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 69
0.7%
68 Bajhang 124
1.2%
69 Achham 137
1.4%
70 Doti 95
0.9%
71 Kailali 489
4.8%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 125
1.2%
75 Darchula 124
1.2%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025