Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F221]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177425
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_9d

Overview

Valid: 12334
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 140
1.1%
2 Panchthar 0
0%
3 Ilam 305
2.5%
4 Jhapa 343
2.8%
5 Morang 364
3%
6 Sunsari 256
2.1%
7 Dhankuta 212
1.7%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 323
2.6%
11 Solukhumbu 134
1.1%
12 Okhaldhunga 159
1.3%
13 Khotang 330
2.7%
14 Udayapur 336
2.7%
15 Saptari 246
2%
16 Siraha 0
0%
17 Dhanusha 211
1.7%
18 Mahottari 198
1.6%
19 Sarlahi 255
2.1%
20 Sindhuli 323
2.6%
21 Ramechhap 0
0%
22 Dolakha 189
1.5%
23 Sindhupalchok 294
2.4%
24 Kabhrepalanchok 324
2.6%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 252
2%
29 Rasuwa 0
0%
30 Dhading 434
3.5%
31 Makwanpur 358
2.9%
32 Rautahat 0
0%
33 Bara 165
1.3%
34 Parsa 137
1.1%
35 Chitwan 0
0%
36 Gorkha 185
1.5%
37 Lamjung 143
1.2%
38 Tanahun 286
2.3%
39 Syangja 215
1.7%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 100
0.8%
44 Parbat 0
0%
45 Baglung 222
1.8%
46 Gulmi 365
3%
47 Palpa 212
1.7%
48 Nawalparasi 382
3.1%
49 Rupandehi 400
3.2%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 240
1.9%
54 Rukum 282
2.3%
55 Salyan 0
0%
56 Dang 370
3%
57 Banke 311
2.5%
58 Bardiya 0
0%
59 Surkhet 319
2.6%
60 Dailekh 237
1.9%
61 Jajarkot 216
1.8%
62 Dolpa 0
0%
63 Jumla 56
0.5%
64 Kalikot 116
0.9%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 98
0.8%
68 Bajhang 163
1.3%
69 Achham 203
1.6%
70 Doti 147
1.2%
71 Kailali 452
3.7%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 198
1.6%
75 Darchula 128
1%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025