Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F223]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177795
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_9f

Overview

Valid: 3857
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 35
0.9%
2 Panchthar 0
0%
3 Ilam 51
1.3%
4 Jhapa 226
5.9%
5 Morang 20
0.5%
6 Sunsari 20
0.5%
7 Dhankuta 57
1.5%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 76
2%
11 Solukhumbu 47
1.2%
12 Okhaldhunga 45
1.2%
13 Khotang 76
2%
14 Udayapur 94
2.4%
15 Saptari 58
1.5%
16 Siraha 0
0%
17 Dhanusha 53
1.4%
18 Mahottari 87
2.3%
19 Sarlahi 80
2.1%
20 Sindhuli 108
2.8%
21 Ramechhap 0
0%
22 Dolakha 57
1.5%
23 Sindhupalchok 33
0.9%
24 Kabhrepalanchok 37
1%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 118
3.1%
29 Rasuwa 0
0%
30 Dhading 196
5.1%
31 Makwanpur 53
1.4%
32 Rautahat 0
0%
33 Bara 65
1.7%
34 Parsa 58
1.5%
35 Chitwan 0
0%
36 Gorkha 52
1.3%
37 Lamjung 49
1.3%
38 Tanahun 78
2%
39 Syangja 74
1.9%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 40
1%
44 Parbat 0
0%
45 Baglung 59
1.5%
46 Gulmi 74
1.9%
47 Palpa 14
0.4%
48 Nawalparasi 69
1.8%
49 Rupandehi 74
1.9%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 64
1.7%
54 Rukum 103
2.7%
55 Salyan 0
0%
56 Dang 159
4.1%
57 Banke 101
2.6%
58 Bardiya 0
0%
59 Surkhet 142
3.7%
60 Dailekh 109
2.8%
61 Jajarkot 86
2.2%
62 Dolpa 0
0%
63 Jumla 13
0.3%
64 Kalikot 64
1.7%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 54
1.4%
68 Bajhang 85
2.2%
69 Achham 108
2.8%
70 Doti 74
1.9%
71 Kailali 230
6%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 73
1.9%
75 Darchula 59
1.5%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025