Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F226]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177791
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_12a

Overview

Valid: 5861
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 57
1%
2 Panchthar 0
0%
3 Ilam 152
2.6%
4 Jhapa 162
2.8%
5 Morang 132
2.3%
6 Sunsari 79
1.3%
7 Dhankuta 109
1.9%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 193
3.3%
11 Solukhumbu 50
0.9%
12 Okhaldhunga 55
0.9%
13 Khotang 225
3.8%
14 Udayapur 233
4%
15 Saptari 121
2.1%
16 Siraha 0
0%
17 Dhanusha 95
1.6%
18 Mahottari 75
1.3%
19 Sarlahi 99
1.7%
20 Sindhuli 171
2.9%
21 Ramechhap 0
0%
22 Dolakha 104
1.8%
23 Sindhupalchok 142
2.4%
24 Kabhrepalanchok 133
2.3%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 109
1.9%
29 Rasuwa 0
0%
30 Dhading 197
3.4%
31 Makwanpur 122
2.1%
32 Rautahat 0
0%
33 Bara 53
0.9%
34 Parsa 51
0.9%
35 Chitwan 0
0%
36 Gorkha 48
0.8%
37 Lamjung 56
1%
38 Tanahun 66
1.1%
39 Syangja 36
0.6%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 67
1.1%
44 Parbat 0
0%
45 Baglung 138
2.4%
46 Gulmi 210
3.6%
47 Palpa 119
2%
48 Nawalparasi 118
2%
49 Rupandehi 92
1.6%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 137
2.3%
54 Rukum 189
3.2%
55 Salyan 0
0%
56 Dang 176
3%
57 Banke 172
2.9%
58 Bardiya 0
0%
59 Surkhet 218
3.7%
60 Dailekh 199
3.4%
61 Jajarkot 100
1.7%
62 Dolpa 0
0%
63 Jumla 52
0.9%
64 Kalikot 109
1.9%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 52
0.9%
68 Bajhang 55
0.9%
69 Achham 70
1.2%
70 Doti 42
0.7%
71 Kailali 337
5.7%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 53
0.9%
75 Darchula 31
0.5%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025