Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F227]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177718
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_12b

Overview

Valid: 489
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 6
1.2%
2 Panchthar 0
0%
3 Ilam 13
2.7%
4 Jhapa 11
2.2%
5 Morang 0
0%
6 Sunsari 3
0.6%
7 Dhankuta 15
3.1%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 18
3.7%
11 Solukhumbu 1
0.2%
12 Okhaldhunga 1
0.2%
13 Khotang 32
6.5%
14 Udayapur 23
4.7%
15 Saptari 5
1%
16 Siraha 0
0%
17 Dhanusha 1
0.2%
18 Mahottari 4
0.8%
19 Sarlahi 0
0%
20 Sindhuli 3
0.6%
21 Ramechhap 0
0%
22 Dolakha 4
0.8%
23 Sindhupalchok 21
4.3%
24 Kabhrepalanchok 17
3.5%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 3
0.6%
29 Rasuwa 0
0%
30 Dhading 2
0.4%
31 Makwanpur 25
5.1%
32 Rautahat 0
0%
33 Bara 2
0.4%
34 Parsa 1
0.2%
35 Chitwan 0
0%
36 Gorkha 4
0.8%
37 Lamjung 10
2%
38 Tanahun 1
0.2%
39 Syangja 3
0.6%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 10
2%
44 Parbat 0
0%
45 Baglung 9
1.8%
46 Gulmi 17
3.5%
47 Palpa 17
3.5%
48 Nawalparasi 2
0.4%
49 Rupandehi 3
0.6%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 18
3.7%
54 Rukum 40
8.2%
55 Salyan 0
0%
56 Dang 17
3.5%
57 Banke 9
1.8%
58 Bardiya 0
0%
59 Surkhet 21
4.3%
60 Dailekh 11
2.2%
61 Jajarkot 13
2.7%
62 Dolpa 0
0%
63 Jumla 1
0.2%
64 Kalikot 10
2%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 2
0.4%
68 Bajhang 3
0.6%
69 Achham 3
0.6%
70 Doti 4
0.8%
71 Kailali 36
7.4%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 3
0.6%
75 Darchula 11
2.2%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025