Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F236]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
212793
Downloads
559
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_14c

Overview

Valid: 2488
Invalid: 0
Type: Discrete
Decimal: 0
Start: 5
End: 6
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 0
0%
2 Panchthar 0
0%
3 Ilam 30
1.2%
4 Jhapa 39
1.6%
5 Morang 8
0.3%
6 Sunsari 6
0.2%
7 Dhankuta 29
1.2%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 32
1.3%
11 Solukhumbu 18
0.7%
12 Okhaldhunga 23
0.9%
13 Khotang 41
1.6%
14 Udayapur 50
2%
15 Saptari 9
0.4%
16 Siraha 0
0%
17 Dhanusha 61
2.5%
18 Mahottari 104
4.2%
19 Sarlahi 98
3.9%
20 Sindhuli 15
0.6%
21 Ramechhap 0
0%
22 Dolakha 5
0.2%
23 Sindhupalchok 164
6.6%
24 Kabhrepalanchok 153
6.1%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 46
1.8%
29 Rasuwa 0
0%
30 Dhading 17
0.7%
31 Makwanpur 109
4.4%
32 Rautahat 0
0%
33 Bara 89
3.6%
34 Parsa 47
1.9%
35 Chitwan 0
0%
36 Gorkha 12
0.5%
37 Lamjung 27
1.1%
38 Tanahun 9
0.4%
39 Syangja 10
0.4%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 46
1.8%
44 Parbat 0
0%
45 Baglung 73
2.9%
46 Gulmi 97
3.9%
47 Palpa 51
2%
48 Nawalparasi 76
3.1%
49 Rupandehi 60
2.4%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 22
0.9%
54 Rukum 66
2.7%
55 Salyan 0
0%
56 Dang 13
0.5%
57 Banke 4
0.2%
58 Bardiya 0
0%
59 Surkhet 132
5.3%
60 Dailekh 86
3.5%
61 Jajarkot 32
1.3%
62 Dolpa 0
0%
63 Jumla 98
3.9%
64 Kalikot 157
6.3%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 92
3.7%
68 Bajhang 23
0.9%
69 Achham 16
0.6%
70 Doti 5
0.2%
71 Kailali 49
2%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 13
0.5%
75 Darchula 26
1%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025