Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F237]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
178743
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_15a

Overview

Valid: 2627
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 25
1%
2 Panchthar 0
0%
3 Ilam 23
0.9%
4 Jhapa 23
0.9%
5 Morang 8
0.3%
6 Sunsari 6
0.2%
7 Dhankuta 25
1%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 30
1.1%
11 Solukhumbu 11
0.4%
12 Okhaldhunga 4
0.2%
13 Khotang 23
0.9%
14 Udayapur 12
0.5%
15 Saptari 6
0.2%
16 Siraha 0
0%
17 Dhanusha 38
1.4%
18 Mahottari 18
0.7%
19 Sarlahi 7
0.3%
20 Sindhuli 6
0.2%
21 Ramechhap 0
0%
22 Dolakha 1
0%
23 Sindhupalchok 26
1%
24 Kabhrepalanchok 17
0.6%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 112
4.3%
29 Rasuwa 0
0%
30 Dhading 175
6.7%
31 Makwanpur 19
0.7%
32 Rautahat 0
0%
33 Bara 1
0%
34 Parsa 0
0%
35 Chitwan 0
0%
36 Gorkha 26
1%
37 Lamjung 38
1.4%
38 Tanahun 46
1.8%
39 Syangja 40
1.5%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 28
1.1%
44 Parbat 0
0%
45 Baglung 57
2.2%
46 Gulmi 90
3.4%
47 Palpa 49
1.9%
48 Nawalparasi 62
2.4%
49 Rupandehi 61
2.3%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 149
5.7%
54 Rukum 204
7.8%
55 Salyan 0
0%
56 Dang 55
2.1%
57 Banke 112
4.3%
58 Bardiya 0
0%
59 Surkhet 127
4.8%
60 Dailekh 105
4%
61 Jajarkot 142
5.4%
62 Dolpa 0
0%
63 Jumla 20
0.8%
64 Kalikot 79
3%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 60
2.3%
68 Bajhang 100
3.8%
69 Achham 105
4%
70 Doti 58
2.2%
71 Kailali 52
2%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 93
3.5%
75 Darchula 53
2%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025