Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F239]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177793
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_16

Overview

Valid: 2270
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 18
0.8%
2 Panchthar 0
0%
3 Ilam 45
2%
4 Jhapa 52
2.3%
5 Morang 73
3.2%
6 Sunsari 59
2.6%
7 Dhankuta 24
1.1%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 37
1.6%
11 Solukhumbu 18
0.8%
12 Okhaldhunga 17
0.7%
13 Khotang 52
2.3%
14 Udayapur 38
1.7%
15 Saptari 53
2.3%
16 Siraha 0
0%
17 Dhanusha 63
2.8%
18 Mahottari 76
3.3%
19 Sarlahi 82
3.6%
20 Sindhuli 51
2.2%
21 Ramechhap 0
0%
22 Dolakha 20
0.9%
23 Sindhupalchok 34
1.5%
24 Kabhrepalanchok 38
1.7%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 27
1.2%
29 Rasuwa 0
0%
30 Dhading 66
2.9%
31 Makwanpur 65
2.9%
32 Rautahat 0
0%
33 Bara 49
2.2%
34 Parsa 55
2.4%
35 Chitwan 0
0%
36 Gorkha 10
0.4%
37 Lamjung 13
0.6%
38 Tanahun 46
2%
39 Syangja 30
1.3%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 10
0.4%
44 Parbat 0
0%
45 Baglung 29
1.3%
46 Gulmi 60
2.6%
47 Palpa 36
1.6%
48 Nawalparasi 77
3.4%
49 Rupandehi 71
3.1%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 44
1.9%
54 Rukum 50
2.2%
55 Salyan 0
0%
56 Dang 64
2.8%
57 Banke 68
3%
58 Bardiya 0
0%
59 Surkhet 63
2.8%
60 Dailekh 69
3%
61 Jajarkot 53
2.3%
62 Dolpa 0
0%
63 Jumla 11
0.5%
64 Kalikot 36
1.6%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 21
0.9%
68 Bajhang 74
3.3%
69 Achham 49
2.2%
70 Doti 42
1.9%
71 Kailali 79
3.5%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 34
1.5%
75 Darchula 19
0.8%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025