Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F242]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177538
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

District name (district)

Data file: Section_1

Overview

Valid: 1396
Invalid: 0
Type: Discrete
Decimal: 0
Start: 4
End: 5
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
District name
Categories
Value Category Cases
1 Taplejung 16
1.1%
2 Panchthar 0
0%
3 Ilam 54
3.9%
4 Jhapa 70
5%
5 Morang 22
1.6%
6 Sunsari 11
0.8%
7 Dhankuta 11
0.8%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 12
0.9%
11 Solukhumbu 21
1.5%
12 Okhaldhunga 19
1.4%
13 Khotang 29
2.1%
14 Udayapur 23
1.6%
15 Saptari 15
1.1%
16 Siraha 0
0%
17 Dhanusha 14
1%
18 Mahottari 45
3.2%
19 Sarlahi 60
4.3%
20 Sindhuli 40
2.9%
21 Ramechhap 0
0%
22 Dolakha 26
1.9%
23 Sindhupalchok 37
2.7%
24 Kabhrepalanchok 44
3.2%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 41
2.9%
29 Rasuwa 0
0%
30 Dhading 56
4%
31 Makwanpur 73
5.2%
32 Rautahat 0
0%
33 Bara 45
3.2%
34 Parsa 35
2.5%
35 Chitwan 0
0%
36 Gorkha 23
1.6%
37 Lamjung 21
1.5%
38 Tanahun 36
2.6%
39 Syangja 25
1.8%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 9
0.6%
44 Parbat 0
0%
45 Baglung 19
1.4%
46 Gulmi 27
1.9%
47 Palpa 18
1.3%
48 Nawalparasi 17
1.2%
49 Rupandehi 20
1.4%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 18
1.3%
54 Rukum 21
1.5%
55 Salyan 0
0%
56 Dang 52
3.7%
57 Banke 50
3.6%
58 Bardiya 0
0%
59 Surkhet 36
2.6%
60 Dailekh 27
1.9%
61 Jajarkot 26
1.9%
62 Dolpa 0
0%
63 Jumla 7
0.5%
64 Kalikot 19
1.4%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 8
0.6%
68 Bajhang 8
0.6%
69 Achham 9
0.6%
70 Doti 5
0.4%
71 Kailali 66
4.7%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 6
0.4%
75 Darchula 4
0.3%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025