Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F245]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177418
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

District name (district)

Data file: Section_3b

Overview

Valid: 866
Invalid: 0
Type: Discrete
Decimal: 0
Start: 4
End: 5
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
District name
Categories
Value Category Cases
1 Taplejung 3
0.3%
2 Panchthar 0
0%
3 Ilam 13
1.5%
4 Jhapa 15
1.7%
5 Morang 24
2.8%
6 Sunsari 12
1.4%
7 Dhankuta 13
1.5%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 13
1.5%
11 Solukhumbu 8
0.9%
12 Okhaldhunga 5
0.6%
13 Khotang 14
1.6%
14 Udayapur 20
2.3%
15 Saptari 13
1.5%
16 Siraha 0
0%
17 Dhanusha 17
2%
18 Mahottari 21
2.4%
19 Sarlahi 25
2.9%
20 Sindhuli 14
1.6%
21 Ramechhap 0
0%
22 Dolakha 8
0.9%
23 Sindhupalchok 20
2.3%
24 Kabhrepalanchok 22
2.5%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 21
2.4%
29 Rasuwa 0
0%
30 Dhading 29
3.3%
31 Makwanpur 25
2.9%
32 Rautahat 0
0%
33 Bara 15
1.7%
34 Parsa 14
1.6%
35 Chitwan 0
0%
36 Gorkha 12
1.4%
37 Lamjung 17
2%
38 Tanahun 23
2.7%
39 Syangja 13
1.5%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 6
0.7%
44 Parbat 0
0%
45 Baglung 13
1.5%
46 Gulmi 24
2.8%
47 Palpa 11
1.3%
48 Nawalparasi 33
3.8%
49 Rupandehi 27
3.1%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 11
1.3%
54 Rukum 13
1.5%
55 Salyan 0
0%
56 Dang 31
3.6%
57 Banke 23
2.7%
58 Bardiya 0
0%
59 Surkhet 31
3.6%
60 Dailekh 21
2.4%
61 Jajarkot 8
0.9%
62 Dolpa 0
0%
63 Jumla 4
0.5%
64 Kalikot 8
0.9%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 13
1.5%
68 Bajhang 25
2.9%
69 Achham 28
3.2%
70 Doti 18
2.1%
71 Kailali 33
3.8%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 22
2.5%
75 Darchula 14
1.6%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025