Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F248]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177555
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

District name (district)

Data file: Section_5

Overview

Valid: 10630
Invalid: 0
Type: Discrete
Decimal: 0
Start: 4
End: 5
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
District name
Categories
Value Category Cases
1 Taplejung 66
0.6%
2 Panchthar 0
0%
3 Ilam 218
2.1%
4 Jhapa 305
2.9%
5 Morang 824
7.8%
6 Sunsari 511
4.8%
7 Dhankuta 76
0.7%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 100
0.9%
11 Solukhumbu 154
1.4%
12 Okhaldhunga 201
1.9%
13 Khotang 97
0.9%
14 Udayapur 121
1.1%
15 Saptari 484
4.6%
16 Siraha 0
0%
17 Dhanusha 168
1.6%
18 Mahottari 358
3.4%
19 Sarlahi 477
4.5%
20 Sindhuli 387
3.6%
21 Ramechhap 0
0%
22 Dolakha 197
1.9%
23 Sindhupalchok 400
3.8%
24 Kabhrepalanchok 409
3.8%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 319
3%
29 Rasuwa 0
0%
30 Dhading 257
2.4%
31 Makwanpur 407
3.8%
32 Rautahat 0
0%
33 Bara 355
3.3%
34 Parsa 278
2.6%
35 Chitwan 0
0%
36 Gorkha 72
0.7%
37 Lamjung 75
0.7%
38 Tanahun 112
1.1%
39 Syangja 97
0.9%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 29
0.3%
44 Parbat 0
0%
45 Baglung 67
0.6%
46 Gulmi 92
0.9%
47 Palpa 74
0.7%
48 Nawalparasi 364
3.4%
49 Rupandehi 309
2.9%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 85
0.8%
54 Rukum 75
0.7%
55 Salyan 0
0%
56 Dang 129
1.2%
57 Banke 78
0.7%
58 Bardiya 0
0%
59 Surkhet 215
2%
60 Dailekh 94
0.9%
61 Jajarkot 145
1.4%
62 Dolpa 0
0%
63 Jumla 28
0.3%
64 Kalikot 95
0.9%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 112
1.1%
68 Bajhang 154
1.4%
69 Achham 309
2.9%
70 Doti 164
1.5%
71 Kailali 190
1.8%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 204
1.9%
75 Darchula 93
0.9%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025