Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F250]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177550
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_1

Overview

Valid: 29268
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 76
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 256
0.9%
2 Panchthar 0
0%
3 Ilam 618
2.1%
4 Jhapa 927
3.2%
5 Morang 939
3.2%
6 Sunsari 701
2.4%
7 Dhankuta 342
1.2%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 453
1.5%
11 Solukhumbu 246
0.8%
12 Okhaldhunga 250
0.9%
13 Khotang 528
1.8%
14 Udayapur 550
1.9%
15 Saptari 774
2.6%
16 Siraha 0
0%
17 Dhanusha 732
2.5%
18 Mahottari 755
2.6%
19 Sarlahi 960
3.3%
20 Sindhuli 616
2.1%
21 Ramechhap 0
0%
22 Dolakha 296
1%
23 Sindhupalchok 639
2.2%
24 Kabhrepalanchok 591
2%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 515
1.8%
29 Rasuwa 0
0%
30 Dhading 803
2.7%
31 Makwanpur 715
2.4%
32 Rautahat 0
0%
33 Bara 747
2.6%
34 Parsa 672
2.3%
35 Chitwan 0
0%
36 Gorkha 301
1%
37 Lamjung 326
1.1%
38 Tanahun 550
1.9%
39 Syangja 417
1.4%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 174
0.6%
44 Parbat 0
0%
45 Baglung 401
1.4%
46 Gulmi 636
2.2%
47 Palpa 384
1.3%
48 Nawalparasi 1214
4.1%
49 Rupandehi 1410
4.8%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 473
1.6%
54 Rukum 498
1.7%
55 Salyan 0
0%
56 Dang 947
3.2%
57 Banke 891
3%
58 Bardiya 0
0%
59 Surkhet 678
2.3%
60 Dailekh 601
2.1%
61 Jajarkot 468
1.6%
62 Dolpa 0
0%
63 Jumla 149
0.5%
64 Kalikot 386
1.3%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 238
0.8%
68 Bajhang 481
1.6%
69 Achham 543
1.9%
70 Doti 420
1.4%
71 Kailali 1306
4.5%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 446
1.5%
75 Darchula 305
1%
76 Born in another country 0
0%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025