Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F250]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
176457
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

District where born Other (s01q05b)

Data file: Section_1

Overview

Valid: 1933
Invalid: 27335
Type: Discrete
Decimal: 2
Start: 74
End: 78
Width: 5
Range: 1 - 76
Format: Numeric

Questions and instructions

Literal question
1.05b. Where was ...born?
Categories
Value Category Cases
1 Taplejung 53
2.7%
2 Panchthar 50
2.6%
3 Ilam 28
1.4%
4 Jhapa 37
1.9%
5 Morang 26
1.3%
6 Sunsari 20
1%
7 Dhankuta 19
1%
8 Tehrathum 32
1.7%
9 Sankhuwasabha 25
1.3%
10 Bhojpur 70
3.6%
11 Solukhumbu 14
0.7%
12 Okhaldhunga 31
1.6%
13 Khotang 76
3.9%
14 Udayapur 17
0.9%
15 Saptari 5
0.3%
16 Siraha 21
1.1%
17 Dhanusha 8
0.4%
18 Mahottari 21
1.1%
19 Sarlahi 14
0.7%
20 Sindhuli 19
1%
21 Ramechhap 15
0.8%
22 Dolakha 6
0.3%
23 Sindhupalchok 27
1.4%
24 Kabhrepalanchok 25
1.3%
25 Lalitpur 8
0.4%
26 Bhaktapur 6
0.3%
27 Kathmandu 14
0.7%
28 Nuwakot 8
0.4%
29 Rasuwa 6
0.3%
30 Dhading 31
1.6%
31 Makwanpur 14
0.7%
32 Rautahat 8
0.4%
33 Bara 11
0.6%
34 Parsa 2
0.1%
35 Chitwan 49
2.5%
36 Gorkha 4
0.2%
37 Lamjung 24
1.2%
38 Tanahun 23
1.2%
39 Syangja 92
4.8%
40 Kaski 27
1.4%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 9
0.5%
44 Parbat 31
1.6%
45 Baglung 50
2.6%
46 Gulmi 86
4.4%
47 Palpa 77
4%
48 Nawalparasi 20
1%
49 Rupandehi 12
0.6%
50 Kapilbastu 24
1.2%
51 Arghakhanchi 26
1.3%
52 Pyuthan 36
1.9%
53 Rolpa 10
0.5%
54 Rukum 12
0.6%
55 Salyan 48
2.5%
56 Dang 16
0.8%
57 Banke 1
0.1%
58 Bardiya 15
0.8%
59 Surkhet 31
1.6%
60 Dailekh 51
2.6%
61 Jajarkot 9
0.5%
62 Dolpa 0
0%
63 Jumla 11
0.6%
64 Kalikot 9
0.5%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 12
0.6%
68 Bajhang 6
0.3%
69 Achham 29
1.5%
70 Doti 76
3.9%
71 Kailali 5
0.3%
72 Kanchanpur 11
0.6%
73 Dadeldhura 13
0.7%
74 Baitadi 9
0.5%
75 Darchula 2
0.1%
76 Born in another country 200
10.3%
Sysmiss 27335
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025