Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F252]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177482
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_3

Overview

Valid: 27701
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 244
0.9%
2 Panchthar 0
0%
3 Ilam 586
2.1%
4 Jhapa 887
3.2%
5 Morang 893
3.2%
6 Sunsari 682
2.5%
7 Dhankuta 320
1.2%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 381
1.4%
11 Solukhumbu 241
0.9%
12 Okhaldhunga 237
0.9%
13 Khotang 494
1.8%
14 Udayapur 501
1.8%
15 Saptari 740
2.7%
16 Siraha 0
0%
17 Dhanusha 713
2.6%
18 Mahottari 726
2.6%
19 Sarlahi 913
3.3%
20 Sindhuli 577
2.1%
21 Ramechhap 0
0%
22 Dolakha 289
1%
23 Sindhupalchok 606
2.2%
24 Kabhrepalanchok 569
2.1%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 492
1.8%
29 Rasuwa 0
0%
30 Dhading 760
2.7%
31 Makwanpur 693
2.5%
32 Rautahat 0
0%
33 Bara 719
2.6%
34 Parsa 643
2.3%
35 Chitwan 0
0%
36 Gorkha 281
1%
37 Lamjung 272
1%
38 Tanahun 502
1.8%
39 Syangja 361
1.3%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 165
0.6%
44 Parbat 0
0%
45 Baglung 378
1.4%
46 Gulmi 585
2.1%
47 Palpa 351
1.3%
48 Nawalparasi 1175
4.2%
49 Rupandehi 1370
4.9%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 444
1.6%
54 Rukum 481
1.7%
55 Salyan 0
0%
56 Dang 910
3.3%
57 Banke 851
3.1%
58 Bardiya 0
0%
59 Surkhet 632
2.3%
60 Dailekh 555
2%
61 Jajarkot 439
1.6%
62 Dolpa 0
0%
63 Jumla 139
0.5%
64 Kalikot 353
1.3%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 230
0.8%
68 Bajhang 460
1.7%
69 Achham 518
1.9%
70 Doti 383
1.4%
71 Kailali 1243
4.5%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 426
1.5%
75 Darchula 291
1.1%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025