Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F254]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177659
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_5a

Overview

Valid: 90935
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 672
0.7%
2 Panchthar 0
0%
3 Ilam 1821
2%
4 Jhapa 2569
2.8%
5 Morang 4001
4.4%
6 Sunsari 2766
3%
7 Dhankuta 1229
1.4%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 1452
1.6%
11 Solukhumbu 999
1.1%
12 Okhaldhunga 1065
1.2%
13 Khotang 1701
1.9%
14 Udayapur 1886
2.1%
15 Saptari 2451
2.7%
16 Siraha 0
0%
17 Dhanusha 2431
2.7%
18 Mahottari 1647
1.8%
19 Sarlahi 2232
2.5%
20 Sindhuli 2013
2.2%
21 Ramechhap 0
0%
22 Dolakha 1269
1.4%
23 Sindhupalchok 2264
2.5%
24 Kabhrepalanchok 2256
2.5%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 1872
2.1%
29 Rasuwa 0
0%
30 Dhading 2649
2.9%
31 Makwanpur 2261
2.5%
32 Rautahat 0
0%
33 Bara 1707
1.9%
34 Parsa 1296
1.4%
35 Chitwan 0
0%
36 Gorkha 1155
1.3%
37 Lamjung 1170
1.3%
38 Tanahun 1879
2.1%
39 Syangja 1371
1.5%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 663
0.7%
44 Parbat 0
0%
45 Baglung 1421
1.6%
46 Gulmi 2125
2.3%
47 Palpa 1415
1.6%
48 Nawalparasi 4293
4.7%
49 Rupandehi 4365
4.8%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 1423
1.6%
54 Rukum 1526
1.7%
55 Salyan 0
0%
56 Dang 2544
2.8%
57 Banke 2529
2.8%
58 Bardiya 0
0%
59 Surkhet 2019
2.2%
60 Dailekh 1307
1.4%
61 Jajarkot 1009
1.1%
62 Dolpa 0
0%
63 Jumla 436
0.5%
64 Kalikot 715
0.8%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 769
0.8%
68 Bajhang 1165
1.3%
69 Achham 1479
1.6%
70 Doti 1141
1.3%
71 Kailali 3910
4.3%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 1554
1.7%
75 Darchula 1043
1.1%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025