Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F261]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177805
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_8

Overview

Valid: 4126
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 29
0.7%
2 Panchthar 0
0%
3 Ilam 24
0.6%
4 Jhapa 61
1.5%
5 Morang 196
4.8%
6 Sunsari 202
4.9%
7 Dhankuta 29
0.7%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 26
0.6%
11 Solukhumbu 36
0.9%
12 Okhaldhunga 47
1.1%
13 Khotang 56
1.4%
14 Udayapur 45
1.1%
15 Saptari 186
4.5%
16 Siraha 0
0%
17 Dhanusha 109
2.6%
18 Mahottari 88
2.1%
19 Sarlahi 135
3.3%
20 Sindhuli 56
1.4%
21 Ramechhap 0
0%
22 Dolakha 44
1.1%
23 Sindhupalchok 127
3.1%
24 Kabhrepalanchok 98
2.4%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 86
2.1%
29 Rasuwa 0
0%
30 Dhading 101
2.4%
31 Makwanpur 135
3.3%
32 Rautahat 0
0%
33 Bara 147
3.6%
34 Parsa 111
2.7%
35 Chitwan 0
0%
36 Gorkha 36
0.9%
37 Lamjung 36
0.9%
38 Tanahun 60
1.5%
39 Syangja 53
1.3%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 23
0.6%
44 Parbat 0
0%
45 Baglung 24
0.6%
46 Gulmi 49
1.2%
47 Palpa 34
0.8%
48 Nawalparasi 213
5.2%
49 Rupandehi 246
6%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 51
1.2%
54 Rukum 37
0.9%
55 Salyan 0
0%
56 Dang 151
3.7%
57 Banke 203
4.9%
58 Bardiya 0
0%
59 Surkhet 90
2.2%
60 Dailekh 69
1.7%
61 Jajarkot 48
1.2%
62 Dolpa 0
0%
63 Jumla 21
0.5%
64 Kalikot 66
1.6%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 15
0.4%
68 Bajhang 35
0.8%
69 Achham 30
0.7%
70 Doti 33
0.8%
71 Kailali 252
6.1%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 35
0.8%
75 Darchula 42
1%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025