Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F261]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177274
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Place of residence (s08q04)

Data file: Section_8

Overview

Valid: 300
Invalid: 3826
Type: Discrete
Decimal: 2
Start: 99
End: 103
Width: 5
Range: 1 - 97
Format: Numeric

Questions and instructions

Question pretext
For those working in agriculture or no-agriculture sectors on wage or salary basis.
Literal question
8.4. Where? (job localtion)
Categories
Value Category Cases
1 Taplejung 0
0%
2 Panchthar 0
0%
3 Ilam 1
0.3%
4 Jhapa 0
0%
5 Morang 3
1%
6 Sunsari 1
0.3%
7 Dhankuta 4
1.3%
8 Tehrathum 0
0%
9 Sankhuwasabha 3
1%
10 Bhojpur 0
0%
11 Solukhumbu 7
2.3%
12 Okhaldhunga 2
0.7%
13 Khotang 2
0.7%
14 Udayapur 2
0.7%
15 Saptari 0
0%
16 Siraha 0
0%
17 Dhanusha 0
0%
18 Mahottari 1
0.3%
19 Sarlahi 0
0%
20 Sindhuli 4
1.3%
21 Ramechhap 1
0.3%
22 Dolakha 5
1.7%
23 Sindhupalchok 2
0.7%
24 Kabhrepalanchok 1
0.3%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 35
11.7%
28 Nuwakot 5
1.7%
29 Rasuwa 0
0%
30 Dhading 6
2%
31 Makwanpur 0
0%
32 Rautahat 0
0%
33 Bara 0
0%
34 Parsa 2
0.7%
35 Chitwan 0
0%
36 Gorkha 5
1.7%
37 Lamjung 0
0%
38 Tanahun 0
0%
39 Syangja 2
0.7%
40 Kaski 5
1.7%
41 Manang 0
0%
42 Mustang 1
0.3%
43 Myagdi 0
0%
44 Parbat 0
0%
45 Baglung 1
0.3%
46 Gulmi 2
0.7%
47 Palpa 0
0%
48 Nawalparasi 2
0.7%
49 Rupandehi 1
0.3%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 0
0%
54 Rukum 0
0%
55 Salyan 0
0%
56 Dang 0
0%
57 Banke 1
0.3%
58 Bardiya 0
0%
59 Surkhet 0
0%
60 Dailekh 0
0%
61 Jajarkot 0
0%
62 Dolpa 0
0%
63 Jumla 0
0%
64 Kalikot 0
0%
65 Mugu 1
0.3%
66 Humla 0
0%
67 Bajura 0
0%
68 Bajhang 0
0%
69 Achham 1
0.3%
70 Doti 2
0.7%
71 Kailali 7
2.3%
72 Kanchanpur 1
0.3%
73 Dadeldhura 0
0%
74 Baitadi 0
0%
75 Darchula 5
1.7%
76 Other 0
0%
81 India 110
36.7%
82 Bhutan 0
0%
83 China 0
0%
84 Bangladesh 0
0%
85 Hongkong 0
0%
86 Malayasia 21
7%
87 Japan 0
0%
88 Saudi Arabia 14
4.7%
89 Qatar 19
6.3%
90 United Arab Emirates 4
1.3%
91 United Kingdom 1
0.3%
92 United States 0
0%
93 South Korea 1
0.3%
94 Australia 0
0%
95 Israel 0
0%
96 Other 6
2%
97 Other 0
0%
Sysmiss 3826
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025