Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F262]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177769
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_9a1

Overview

Valid: 9800
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 76
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 111
1.1%
2 Panchthar 0
0%
3 Ilam 265
2.7%
4 Jhapa 187
1.9%
5 Morang 118
1.2%
6 Sunsari 91
0.9%
7 Dhankuta 148
1.5%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 190
1.9%
11 Solukhumbu 98
1%
12 Okhaldhunga 115
1.2%
13 Khotang 211
2.2%
14 Udayapur 226
2.3%
15 Saptari 179
1.8%
16 Siraha 0
0%
17 Dhanusha 187
1.9%
18 Mahottari 173
1.8%
19 Sarlahi 193
2%
20 Sindhuli 195
2%
21 Ramechhap 0
0%
22 Dolakha 150
1.5%
23 Sindhupalchok 470
4.8%
24 Kabhrepalanchok 360
3.7%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 240
2.4%
29 Rasuwa 0
0%
30 Dhading 325
3.3%
31 Makwanpur 243
2.5%
32 Rautahat 0
0%
33 Bara 150
1.5%
34 Parsa 171
1.7%
35 Chitwan 0
0%
36 Gorkha 149
1.5%
37 Lamjung 144
1.5%
38 Tanahun 200
2%
39 Syangja 134
1.4%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 113
1.2%
44 Parbat 0
0%
45 Baglung 183
1.9%
46 Gulmi 255
2.6%
47 Palpa 136
1.4%
48 Nawalparasi 301
3.1%
49 Rupandehi 241
2.5%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 304
3.1%
54 Rukum 373
3.8%
55 Salyan 0
0%
56 Dang 237
2.4%
57 Banke 161
1.6%
58 Bardiya 0
0%
59 Surkhet 271
2.8%
60 Dailekh 224
2.3%
61 Jajarkot 303
3.1%
62 Dolpa 0
0%
63 Jumla 90
0.9%
64 Kalikot 147
1.5%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 127
1.3%
68 Bajhang 105
1.1%
69 Achham 186
1.9%
70 Doti 114
1.2%
71 Kailali 280
2.9%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 124
1.3%
75 Darchula 102
1%
76 Other 0
0%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025