Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F262]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
176015
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

District where plot is located (s09q04a)

Data file: Section_9a1

Overview

Valid: 9800
Invalid: 0
Type: Discrete
Decimal: 2
Start: 62
End: 66
Width: 5
Range: 1 - 76
Format: Numeric

Questions and instructions

Literal question
9.4a. Where is this plot located - District? (write a code)
Categories
Value Category Cases
1 Taplejung 110
1.1%
2 Panchthar 0
0%
3 Ilam 265
2.7%
4 Jhapa 190
1.9%
5 Morang 128
1.3%
6 Sunsari 93
0.9%
7 Dhankuta 140
1.4%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 186
1.9%
11 Solukhumbu 98
1%
12 Okhaldhunga 115
1.2%
13 Khotang 210
2.1%
14 Udayapur 225
2.3%
15 Saptari 179
1.8%
16 Siraha 0
0%
17 Dhanusha 186
1.9%
18 Mahottari 168
1.7%
19 Sarlahi 198
2%
20 Sindhuli 194
2%
21 Ramechhap 0
0%
22 Dolakha 150
1.5%
23 Sindhupalchok 470
4.8%
24 Kabhrepalanchok 359
3.7%
25 Lalitpur 0
0%
26 Bhaktapur 1
0%
27 Kathmandu 2
0%
28 Nuwakot 240
2.4%
29 Rasuwa 0
0%
30 Dhading 332
3.4%
31 Makwanpur 243
2.5%
32 Rautahat 0
0%
33 Bara 142
1.4%
34 Parsa 179
1.8%
35 Chitwan 4
0%
36 Gorkha 143
1.5%
37 Lamjung 142
1.4%
38 Tanahun 198
2%
39 Syangja 133
1.4%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 119
1.2%
44 Parbat 0
0%
45 Baglung 177
1.8%
46 Gulmi 249
2.5%
47 Palpa 130
1.3%
48 Nawalparasi 302
3.1%
49 Rupandehi 251
2.6%
50 Kapilbastu 1
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 302
3.1%
54 Rukum 372
3.8%
55 Salyan 0
0%
56 Dang 236
2.4%
57 Banke 166
1.7%
58 Bardiya 5
0.1%
59 Surkhet 265
2.7%
60 Dailekh 221
2.3%
61 Jajarkot 305
3.1%
62 Dolpa 0
0%
63 Jumla 91
0.9%
64 Kalikot 147
1.5%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 126
1.3%
68 Bajhang 105
1.1%
69 Achham 186
1.9%
70 Doti 114
1.2%
71 Kailali 281
2.9%
72 Kanchanpur 3
0%
73 Dadeldhura 0
0%
74 Baitadi 122
1.2%
75 Darchula 101
1%
76 Other 0
0%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025