Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F263]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
178742
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_9a2

Overview

Valid: 713
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 20
2.8%
2 Panchthar 0
0%
3 Ilam 17
2.4%
4 Jhapa 41
5.8%
5 Morang 29
4.1%
6 Sunsari 23
3.2%
7 Dhankuta 2
0.3%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 12
1.7%
11 Solukhumbu 7
1%
12 Okhaldhunga 6
0.8%
13 Khotang 25
3.5%
14 Udayapur 15
2.1%
15 Saptari 44
6.2%
16 Siraha 0
0%
17 Dhanusha 6
0.8%
18 Mahottari 15
2.1%
19 Sarlahi 11
1.5%
20 Sindhuli 12
1.7%
21 Ramechhap 0
0%
22 Dolakha 9
1.3%
23 Sindhupalchok 24
3.4%
24 Kabhrepalanchok 27
3.8%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 10
1.4%
29 Rasuwa 0
0%
30 Dhading 16
2.2%
31 Makwanpur 17
2.4%
32 Rautahat 0
0%
33 Bara 3
0.4%
34 Parsa 4
0.6%
35 Chitwan 0
0%
36 Gorkha 7
1%
37 Lamjung 7
1%
38 Tanahun 12
1.7%
39 Syangja 0
0%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 0
0%
44 Parbat 0
0%
45 Baglung 13
1.8%
46 Gulmi 5
0.7%
47 Palpa 2
0.3%
48 Nawalparasi 40
5.6%
49 Rupandehi 43
6%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 1
0.1%
54 Rukum 2
0.3%
55 Salyan 0
0%
56 Dang 52
7.3%
57 Banke 26
3.6%
58 Bardiya 0
0%
59 Surkhet 10
1.4%
60 Dailekh 13
1.8%
61 Jajarkot 0
0%
62 Dolpa 0
0%
63 Jumla 1
0.1%
64 Kalikot 5
0.7%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 6
0.8%
68 Bajhang 2
0.3%
69 Achham 4
0.6%
70 Doti 3
0.4%
71 Kailali 61
8.6%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 3
0.4%
75 Darchula 0
0%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025