Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F266]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177579
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_9b1

Overview

Valid: 10177
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 125
1.2%
2 Panchthar 0
0%
3 Ilam 330
3.2%
4 Jhapa 183
1.8%
5 Morang 104
1%
6 Sunsari 87
0.9%
7 Dhankuta 211
2.1%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 317
3.1%
11 Solukhumbu 130
1.3%
12 Okhaldhunga 152
1.5%
13 Khotang 277
2.7%
14 Udayapur 226
2.2%
15 Saptari 94
0.9%
16 Siraha 0
0%
17 Dhanusha 115
1.1%
18 Mahottari 82
0.8%
19 Sarlahi 108
1.1%
20 Sindhuli 263
2.6%
21 Ramechhap 0
0%
22 Dolakha 216
2.1%
23 Sindhupalchok 313
3.1%
24 Kabhrepalanchok 281
2.8%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 231
2.3%
29 Rasuwa 0
0%
30 Dhading 309
3%
31 Makwanpur 288
2.8%
32 Rautahat 0
0%
33 Bara 81
0.8%
34 Parsa 77
0.8%
35 Chitwan 0
0%
36 Gorkha 95
0.9%
37 Lamjung 75
0.7%
38 Tanahun 131
1.3%
39 Syangja 106
1%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 122
1.2%
44 Parbat 0
0%
45 Baglung 246
2.4%
46 Gulmi 364
3.6%
47 Palpa 210
2.1%
48 Nawalparasi 205
2%
49 Rupandehi 210
2.1%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 332
3.3%
54 Rukum 317
3.1%
55 Salyan 0
0%
56 Dang 185
1.8%
57 Banke 140
1.4%
58 Bardiya 0
0%
59 Surkhet 263
2.6%
60 Dailekh 317
3.1%
61 Jajarkot 291
2.9%
62 Dolpa 0
0%
63 Jumla 120
1.2%
64 Kalikot 190
1.9%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 134
1.3%
68 Bajhang 176
1.7%
69 Achham 382
3.8%
70 Doti 368
3.6%
71 Kailali 202
2%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 251
2.5%
75 Darchula 145
1.4%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025