Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F269]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177807
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_9d

Overview

Valid: 11328
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 123
1.1%
2 Panchthar 0
0%
3 Ilam 267
2.4%
4 Jhapa 264
2.3%
5 Morang 332
2.9%
6 Sunsari 268
2.4%
7 Dhankuta 247
2.2%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 349
3.1%
11 Solukhumbu 149
1.3%
12 Okhaldhunga 158
1.4%
13 Khotang 358
3.2%
14 Udayapur 358
3.2%
15 Saptari 232
2%
16 Siraha 0
0%
17 Dhanusha 113
1%
18 Mahottari 134
1.2%
19 Sarlahi 128
1.1%
20 Sindhuli 347
3.1%
21 Ramechhap 0
0%
22 Dolakha 197
1.7%
23 Sindhupalchok 282
2.5%
24 Kabhrepalanchok 315
2.8%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 265
2.3%
29 Rasuwa 0
0%
30 Dhading 391
3.5%
31 Makwanpur 332
2.9%
32 Rautahat 0
0%
33 Bara 71
0.6%
34 Parsa 64
0.6%
35 Chitwan 0
0%
36 Gorkha 174
1.5%
37 Lamjung 121
1.1%
38 Tanahun 292
2.6%
39 Syangja 204
1.8%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 101
0.9%
44 Parbat 0
0%
45 Baglung 211
1.9%
46 Gulmi 349
3.1%
47 Palpa 191
1.7%
48 Nawalparasi 293
2.6%
49 Rupandehi 257
2.3%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 232
2%
54 Rukum 254
2.2%
55 Salyan 0
0%
56 Dang 317
2.8%
57 Banke 233
2.1%
58 Bardiya 0
0%
59 Surkhet 289
2.6%
60 Dailekh 269
2.4%
61 Jajarkot 204
1.8%
62 Dolpa 0
0%
63 Jumla 43
0.4%
64 Kalikot 104
0.9%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 97
0.9%
68 Bajhang 183
1.6%
69 Achham 228
2%
70 Doti 158
1.4%
71 Kailali 421
3.7%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 215
1.9%
75 Darchula 144
1.3%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025