Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F272]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177742
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_10

Overview

Valid: 1256
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 6
0.5%
2 Panchthar 0
0%
3 Ilam 29
2.3%
4 Jhapa 49
3.9%
5 Morang 65
5.2%
6 Sunsari 32
2.5%
7 Dhankuta 11
0.9%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 9
0.7%
11 Solukhumbu 21
1.7%
12 Okhaldhunga 6
0.5%
13 Khotang 21
1.7%
14 Udayapur 22
1.8%
15 Saptari 30
2.4%
16 Siraha 0
0%
17 Dhanusha 27
2.1%
18 Mahottari 21
1.7%
19 Sarlahi 36
2.9%
20 Sindhuli 27
2.1%
21 Ramechhap 0
0%
22 Dolakha 6
0.5%
23 Sindhupalchok 28
2.2%
24 Kabhrepalanchok 30
2.4%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 28
2.2%
29 Rasuwa 0
0%
30 Dhading 32
2.5%
31 Makwanpur 25
2%
32 Rautahat 0
0%
33 Bara 26
2.1%
34 Parsa 16
1.3%
35 Chitwan 0
0%
36 Gorkha 10
0.8%
37 Lamjung 12
1%
38 Tanahun 20
1.6%
39 Syangja 18
1.4%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 10
0.8%
44 Parbat 0
0%
45 Baglung 20
1.6%
46 Gulmi 25
2%
47 Palpa 14
1.1%
48 Nawalparasi 76
6.1%
49 Rupandehi 93
7.4%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 18
1.4%
54 Rukum 15
1.2%
55 Salyan 0
0%
56 Dang 47
3.7%
57 Banke 35
2.8%
58 Bardiya 0
0%
59 Surkhet 52
4.1%
60 Dailekh 17
1.4%
61 Jajarkot 10
0.8%
62 Dolpa 0
0%
63 Jumla 11
0.9%
64 Kalikot 14
1.1%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 12
1%
68 Bajhang 12
1%
69 Achham 12
1%
70 Doti 6
0.5%
71 Kailali 72
5.7%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 12
1%
75 Darchula 10
0.8%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025