Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F273]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177741
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_11

Overview

Valid: 5343
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 37
0.7%
2 Panchthar 0
0%
3 Ilam 101
1.9%
4 Jhapa 113
2.1%
5 Morang 133
2.5%
6 Sunsari 76
1.4%
7 Dhankuta 65
1.2%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 104
1.9%
11 Solukhumbu 47
0.9%
12 Okhaldhunga 60
1.1%
13 Khotang 133
2.5%
14 Udayapur 127
2.4%
15 Saptari 85
1.6%
16 Siraha 0
0%
17 Dhanusha 125
2.3%
18 Mahottari 96
1.8%
19 Sarlahi 89
1.7%
20 Sindhuli 102
1.9%
21 Ramechhap 0
0%
22 Dolakha 67
1.3%
23 Sindhupalchok 118
2.2%
24 Kabhrepalanchok 157
2.9%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 91
1.7%
29 Rasuwa 0
0%
30 Dhading 168
3.1%
31 Makwanpur 117
2.2%
32 Rautahat 0
0%
33 Bara 52
1%
34 Parsa 49
0.9%
35 Chitwan 0
0%
36 Gorkha 90
1.7%
37 Lamjung 135
2.5%
38 Tanahun 148
2.8%
39 Syangja 192
3.6%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 62
1.2%
44 Parbat 0
0%
45 Baglung 132
2.5%
46 Gulmi 209
3.9%
47 Palpa 138
2.6%
48 Nawalparasi 186
3.5%
49 Rupandehi 156
2.9%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 72
1.3%
54 Rukum 112
2.1%
55 Salyan 0
0%
56 Dang 118
2.2%
57 Banke 126
2.4%
58 Bardiya 0
0%
59 Surkhet 146
2.7%
60 Dailekh 141
2.6%
61 Jajarkot 63
1.2%
62 Dolpa 0
0%
63 Jumla 20
0.4%
64 Kalikot 70
1.3%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 39
0.7%
68 Bajhang 68
1.3%
69 Achham 118
2.2%
70 Doti 81
1.5%
71 Kailali 245
4.6%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 86
1.6%
75 Darchula 78
1.5%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025