Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F275]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177794
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_12a

Overview

Valid: 7422
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 68
0.9%
2 Panchthar 0
0%
3 Ilam 173
2.3%
4 Jhapa 176
2.4%
5 Morang 183
2.5%
6 Sunsari 148
2%
7 Dhankuta 173
2.3%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 265
3.6%
11 Solukhumbu 69
0.9%
12 Okhaldhunga 74
1%
13 Khotang 291
3.9%
14 Udayapur 291
3.9%
15 Saptari 170
2.3%
16 Siraha 0
0%
17 Dhanusha 106
1.4%
18 Mahottari 90
1.2%
19 Sarlahi 129
1.7%
20 Sindhuli 223
3%
21 Ramechhap 0
0%
22 Dolakha 129
1.7%
23 Sindhupalchok 183
2.5%
24 Kabhrepalanchok 161
2.2%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 114
1.5%
29 Rasuwa 0
0%
30 Dhading 247
3.3%
31 Makwanpur 140
1.9%
32 Rautahat 0
0%
33 Bara 71
1%
34 Parsa 64
0.9%
35 Chitwan 0
0%
36 Gorkha 81
1.1%
37 Lamjung 67
0.9%
38 Tanahun 100
1.3%
39 Syangja 53
0.7%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 76
1%
44 Parbat 0
0%
45 Baglung 164
2.2%
46 Gulmi 252
3.4%
47 Palpa 144
1.9%
48 Nawalparasi 139
1.9%
49 Rupandehi 123
1.7%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 168
2.3%
54 Rukum 216
2.9%
55 Salyan 0
0%
56 Dang 223
3%
57 Banke 218
2.9%
58 Bardiya 0
0%
59 Surkhet 297
4%
60 Dailekh 260
3.5%
61 Jajarkot 141
1.9%
62 Dolpa 0
0%
63 Jumla 60
0.8%
64 Kalikot 135
1.8%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 56
0.8%
68 Bajhang 59
0.8%
69 Achham 77
1%
70 Doti 56
0.8%
71 Kailali 429
5.8%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 55
0.7%
75 Darchula 35
0.5%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025