Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F283]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177713
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_14a

Overview

Valid: 37037
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 267
0.7%
2 Panchthar 0
0%
3 Ilam 1002
2.7%
4 Jhapa 1376
3.7%
5 Morang 1368
3.7%
6 Sunsari 803
2.2%
7 Dhankuta 530
1.4%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 644
1.7%
11 Solukhumbu 376
1%
12 Okhaldhunga 369
1%
13 Khotang 638
1.7%
14 Udayapur 863
2.3%
15 Saptari 682
1.8%
16 Siraha 0
0%
17 Dhanusha 1334
3.6%
18 Mahottari 699
1.9%
19 Sarlahi 929
2.5%
20 Sindhuli 622
1.7%
21 Ramechhap 0
0%
22 Dolakha 398
1.1%
23 Sindhupalchok 911
2.5%
24 Kabhrepalanchok 1061
2.9%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 582
1.6%
29 Rasuwa 0
0%
30 Dhading 962
2.6%
31 Makwanpur 876
2.4%
32 Rautahat 0
0%
33 Bara 651
1.8%
34 Parsa 528
1.4%
35 Chitwan 0
0%
36 Gorkha 430
1.2%
37 Lamjung 460
1.2%
38 Tanahun 748
2%
39 Syangja 564
1.5%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 317
0.9%
44 Parbat 0
0%
45 Baglung 632
1.7%
46 Gulmi 1083
2.9%
47 Palpa 733
2%
48 Nawalparasi 1827
4.9%
49 Rupandehi 2084
5.6%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 534
1.4%
54 Rukum 664
1.8%
55 Salyan 0
0%
56 Dang 1056
2.9%
57 Banke 1024
2.8%
58 Bardiya 0
0%
59 Surkhet 1106
3%
60 Dailekh 596
1.6%
61 Jajarkot 424
1.1%
62 Dolpa 0
0%
63 Jumla 162
0.4%
64 Kalikot 321
0.9%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 264
0.7%
68 Bajhang 293
0.8%
69 Achham 517
1.4%
70 Doti 471
1.3%
71 Kailali 1408
3.8%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 493
1.3%
75 Darchula 355
1%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025